
AusFarm Tutorial | 1

AusFarm Tutorial
CSIRO Agriculture and Food

Workshop training manual

Version 2.0

Feb 2020

Australia’s National
Science Agency

2 | AusFarm training manual

Enquiries should be addressed to:

Neville Herrmann

CSIRO Agriculture & Food

GPO Box 1700

Canberra ACT 2601

grazplan@csiro.au

Copyright and Disclaimer

© 2020 CSIRO, To the extent permitted by law, all rights are reserved and no part of this

publication covered by copyright may be reproduced or copied in any form or by any

means except with the written permission of CSIRO.

Important Disclaimer

CSIRO advises that the information contained in this publication comprises general

statements based on scientific research. The reader is advised and needs to be aware

that such information may be incomplete or unable to be used in any specific situation.

No reliance or actions must therefore be made on that information without seeking

prior expert professional, scientific and technical advice. To the extent permitted by law,

CSIRO (including its employees and consultants) excludes all liability to any person for

any consequences, including but not limited to all losses, damages, costs, expenses and

any other compensation, arising directly or indirectly from using this publication (in part

or in whole) and any information or material contained in it.

AusFarm Tutorial | 3

Contents

1. Introduction .. 5

 AusFarm ... 5

2. Using AusFarm .. 7

 The Simulation Process ... 8

3. Components, Modules and Systems .. 10

 Components .. 10

 Modules ... 10

 Systems .. 11

4. Getting Started ... 12

 Installing AusFarm ... 12

 Running AusFarm .. 12

 The Main Window ... 13

 A Tour of the Simulation Window ... 13

 Upper pane .. 14

 Left-hand pane .. 15

 Right-hand pane .. 15

 Running a Simulation... 17

 The Results Window .. 19

 Generating a chart ... 19

 Generating a table ... 21

 Data treatments .. 22

5. Configuring a new simulation ... 25

 Configuring and Initialising Modules ... 25

 The Notes and Logging tabs .. 28

 Sequencing the simulation .. 29

 Selecting and Storing Outputs ... 31

 Comparing initial values of components ... 36

6. Specifying Management ... 39

4 | AusFarm training manual

 Variables .. 39

 Events .. 41

 Discovering the Variables and Events for Modules 43

7. Contents of Manager Scripts .. 46

 Time specifiers ... 46

 Rules .. 47

 Definition statements .. 59

 Examples of complete statements .. 61

 Management Events Summary ... 62

8. Writing management scripts .. 64

 Using the script editor ... 64

9. Introduction to Livestock Management and the Stock component 68

 Stock component ... 68

10. Simulation Analyses .. 70

 Setting up analyses .. 70

 Using Generic modules as factors ... 73

11. Configuring Reports .. 76

 Report Variables .. 77

12. Using Repositories .. 78

 Getting module data from a repository .. 78

 Copying module data to a repository .. 79

 Copying module data from simulation to simulation 79

13. Using APSoil soil data .. 80

AusFarm Tutorial | 5

1. Introduction

 AusFarm

AusFarm is a software tool that allows problems to be analysed with simulation models

of physical and biological systems. AusFarm is highly generic, but it has been built

primarily to assist decision-making in agricultural enterprises at scales ranging from

paddocks to whole landscapes.

With the complexity of farming systems having multiple enterprises increasing there is

an opportunity for modelling tools to represent them and provide insights into how

these systems can be adapted to improve efficiency and reduce environmental impact.

AusFarm can model cropping systems and can also model grazing systems interacting

with cropping enterprises.

Simulations in AusFarm have the following features:

Modularity Instead of a single program that contains the entire "AusFarm

model", simulations in AusFarm are built up from smaller

elements known as components that describe parts of a

biophysical system.

For example, the standard AusFarm distribution includes one

component that handles weather data, and another that

describes the dynamics of grazing ruminants.

Separating the parts of a model that are closely related into

sub-models has advantages during model development, for

software maintenance, and in the deployment of up-to-date

versions of models. It also means that models from groups

other than CSIRO Plant Industry can be used within AusFarm.

Configurability Once a simulation model is decomposed into components, it

becomes natural to arrange the sub-models in configurations

that reflect a range of different real-world situations.

The practical advantages are that an AusFarm user can put

together the simplest model required to analyse a given

problem and can use multiple copies of a model component

within a simulation (for example to represent the flows of soil

water in each of several paddocks).

Interchangeability Modular construction also permits substitution of one

representation of a process by another, depending on the

6 | AusFarm training manual

needs of the user. This can be useful in comparing different

representations of a process, or in configuring a simulation for

efficient execution.

Representation of

both continuous

and discrete

processes

Many processes in agricultural systems are fundamentally

continuous in nature. Others, particularly management

interventions, involve sharp changes in the state of the system,

which may be thought of as instantaneous events. AusFarm

can accommodate both continuous and discontinuous

processes. Farm system management tasks can be customised

using a Manager component which allows the use of detailed

scripts containing rules to drive much of the behaviour of the

simulation.

Hierarchical

structure

Ecological and hence agronomic systems contain too many

entities to be solved analytically by differential-equation

techniques, and they have too few entities to be treated as

statistical assemblages. Current ecological theory suggests that

the best way to analyse this kind of complexity is to take

advantage of the hierarchical organization in these systems

that arises from differences in the rates of different processes.

Simulations in AusFarm can be configured to capture such

hierarchical structure.

Advanced reporting

features

AusFarm allows the output of results in several formats

including text and databases. Built into AusFarm is a reporting

system that has flexibility to accommodate many variations in

simulation structure and allows easy comparison of treatments

in a multidimensional simulation experiment called an Analysis.

AusFarm has been developed by CSIRO Agriculture and Food. The standard distribution

includes a set of models, also developed by CSIRO Agriculture and Food, that enable

simulations of grazing enterprises located in temperate southern Australia.

AusFarm Tutorial | 7

2. Using AusFarm

Typically, use of AusFarm will follow these steps:

• Determine what question AusFarm is to answer, and therefore what information

a simulation (or simulations) with AusFarm needs to generate. This is the most

important step in the process.

• Construct a simulation that represents the biophysical and management system

under consideration.

(a) Create a simulation window or open an existing simulation file that is suited to the
question at hand.

(b) Configure the simulation to include representations of all the processes that are
important in understanding the biophysical problem.

(c) Specify the initial conditions of the simulation: the locality for which weather data
are to be used, the attributes of soils, plants and animals on the first day of the
simulation, costs and prices, etc.

(d) If necessary (almost always), describe the management of the biophysical system by
writing a management script.

(e) Select the outputs to be stored for later viewing.

• Run the simulation.

• Extract the results of the simulation as tables or charts and using these outputs

to help answer the question at hand. AusFarm contains powerful facilities for

summarizing simulation outputs. It may also be useful to export information

from AusFarm to another program such as a spreadsheet or statistics package for

further analysis.

Answering a question will often require several slightly different simulations. A set of

simulations in AusFarm can take the form of a structured “simulation experiment” in

which one or more inputs to the simulation are varied systematically. Such simulation

experiments can require large numbers of simulation runs. AusFarm incorporates a

feature called a Simulation Analysis where configuring similar simulations and reviewing

the results comparatively is simplified and has enormous flexibility.

Note: Beyond a certain level of complexity, it becomes almost inevitable that a

simulation will not work as intended the first time it is run. It is the user's responsibility

to store and examine outputs from the simulations to ensure that their structure, initial

values and management script are working as intended. Various logging options are

available to assist in this process.

8 | AusFarm training manual

 The Simulation Process

The process for testing a model can follow the flow shown below. AusFarm is designed
to integrate all these steps within the application. This means that simulations can be
tested efficiently and opportunities for erroneous configuration are reduced.

Configuration

• The system design is formulated. The model structure that includes the sub-
models is built in the model tree and the management strategy is coded in
Manager scripts.

Initialisation

• This involves setting initial values for the sub-models.

Test for Acceptability

• Executing the time-steps for the simulation and examining the results from a test
run. This is a critical phase that should be undertaken carefully. When further
refinement is necessary the Initialisation step is undertaken again. The
acceptability step is often the main task with the remaining steps being optional.

Factors

• Choosing sub-model initial values that can be adjusted between simulation runs.
This will determine the number of treatments that will be processed in the
Analysis. Factors in AusFarm are represented by one of the sub-models or they
can be a system of sub-models.

Reports

• Designing a report that can include several charts, tables, or text. The report will
give some insight into the effects of varying the values of the factors chosen
previously.

AusFarm Tutorial | 9

Analysis

• This is the task of testing each simulation treatment. The multi-dimensional
experiment is processed, and results are stored for presentation using the
previously designed report template.

Results

• The simulation results are formatted using the report design and shown in a

HTML document.

10 | AusFarm training manual

3. Components, Modules and Systems

 Components

In AusFarm, model logic is contained within entities called components. Each component

corresponds to a sub-model, i.e. a set of variables, equations and events that are inter-

related. For example, the standard distribution of AusFarm contains a Soil Water

component that contains the logic for a soil water budget, and a Stock component that

contains the GRAZPLAN ruminant biology model.

Some components can be thought of as "utilities" - they perform tasks that are not part

of the model in a narrow sense (i.e. as a mathematical entity) but are vital to making the

model useful. An example of a utility is the Output component, which allows the user to

store the results of simulations for later interpretation.

Each component is implemented as a Windows dynamic link library (DLL). Before a

component can be used in a simulation, it must be installed on the component palette.

 Modules

A module is a specific instance of a component within a

specific simulation. A simulation may contain several modules

that are instances of the same component. For example, in

the simulation structure at right, there are two modules that

are instances of the Soil Water component, and six that are

instances of the Pasture component.

A module can only exist as part of a simulation. The set of

modules in a simulation is defined by adding them to the

simulation tree in the Models tab of the simulation window.

This process is known as configuring the simulation.

From the point of view of an AusFarm user, each module is

made up of the following elements:

Name A module's name is supplied by the user via the Models tab. It is used

to refer to the module and its variables or events, for example when

writing the management script. Each module has a short name

AusFarm Tutorial | 11

(e.g. "pasture") and a fully-qualified name that is defined by the

systems to which it belongs (e.g. "paddock2.pasture "). The short name

need not be unique, but the fully qualified name must be unique.

Initialisation

Variables

contain the values that must be known to set up a module.

Driving Variables contain values that are not part of the module but must be known to

calculate its equations.

Output Variables contain values that can be stored for later viewing and analysis, and/or

used in management scripts to control the course of the simulation.

(Initialisation variables are usually also available as output variables).

Sequenced Events contain the rate equations of the module, i.e. the main model logic.

Each sequenced event is computed once per time step. AusFarm

handles the setting up of sequenced events automatically.

Management

Events

can be invoked as part of management scripts to change the module's

state in some way.

 Systems

The modules in each simulation are arranged, not in a simple list, but in a tree. Each sub-

tree of this structure is known as a system, and the module at the "root" of a sub-tree is

called a system module. The simulation structure above has three systems: the system

made up of Paddock1 and its child modules, the system made up of Paddock2 and its

child modules, and the entire simulation. Only certain components can act as system

modules. In the default AusFarm distribution, only the Paddock component can be used

to form systems.

12 | AusFarm training manual

4. Getting Started

The software tutorial section of this manual begins here. Follow the steps along with the

installed software to become familiar with how the user interface works. The symbol

is used to instruct you to follow the steps on your computer with the AusFarm software.

 Installing AusFarm

AusFarm is currently a Microsoft® Windows 32-bit native code program that can be

installed and run on 32-bit and 64-bit versions of Windows.

 Start by installing the AusFarm software. Run the setupaf.exe program and

follow the prompts. Some sample weather data will be installed that will allow

the running of an example simulation.

 Running AusFarm

 Run the AusFarm program. The main window will appear:

The main window has a menu and toolbar at the top and a client area where other

windows for simulations, results selection and reporting reside. At the right-hand side of

the toolbar is the Component Palette, which is used when configuring simulations.

AusFarm Tutorial | 13

 The Main Window

The main window hosts simulation windows. You may have multiple simulations open at

once. Along the top of the main window is the main toolbar and the component palette.

The main toolbar is useful for quick access to common tasks.

• Create a new simulation

• Open an existing simulation

• Save the current simulation

• Open the outputs window

• Show or hide the Repository

• Open the preferences dialog

The component palette displays
the components that can be
incorporated into a simulation.
They can be dragged from here
with the mouse onto a simulation
tree. Right clicking the mouse on a
component item on the palette
displays a menu with further
options.

Info Reads the internal component description and displays property and event
information.

Sequence Allows changing of the default sequenced event ordering for this
component.

Change icon Allows changing of the default component icon

Help Opens the help file with the component specification for this component

Remove Removes the component from the palette. This does not delete the file

Move to Options for moving components onto other tabs

 A Tour of the Simulation Window

Simulation windows are used to create and modify simulations. It is possible to have

several Simulation windows open in AusFarm at once.

 Choose the File | Reopen menu option and choose the Example.afs simulation.

14 | AusFarm training manual

The management script is displayed for the example simulation.

Each Simulation window is divided into three main areas, or panes. The two middle

panes contain several tabs that become visible depending on the task that the user is

performing.

 Upper pane

The upper pane is used to enter the date ranges over which the simulation is to be

executed. The preferred reporting option is also chosen here.

Type Use this combo box to select the type of simulation run that is to be performed. In

this release of AusFarm, the only option in this combo box is "Historical".

Start Enter the start date for the simulation. Note that all initial values that are entered

apply on this date. Dates may be entered in "d mmm yyyy" format, or selected by

clicking on the calendar buttons and so opening a calendar dialog.

AusFarm Tutorial | 15

End Enter the end date for the simulation.

The Run button commences the process of the simulation.

This button appears when the simulation is configured as an Analysis. It will

process the Analysis.

The Stop button appears while the simulation is executing. Use it to halt process.

 Left-hand pane

This pane has three tabs:

 Models tab is always visible. It is used to configure the

structure of the simulation model.

 Selecting a module in the Models tab will make

either the Initialise tab, the Outputs tab or the

Management Script tab visible in the right-hand

pane, depending on the type of module

selected.

 Variables

tab

becomes visible when the user is editing a

management script or a TextOut component. It

shows the names and structure of all variables

belonging to modules in the simulation.

 Events tab becomes visible when the user is editing a

management script. It shows the names and

parameters of all events belonging to modules

in the simulation.

 Right-hand pane

This pane has six tabs, some are visible only when specific components are selected in

the model tree:

file:///C:/Projects/CMP/farmwise/help/html/analysis.html

16 | AusFarm training manual

 Initialise tab

Becomes visible when the user selects a

module other than a Manager or

Output module in the Models tab. It

shows the initial values of variables

belonging to the selected module and

allows the user to change them.

 Outputs tab

Becomes visible when the user selects

an Output module in the Models tab. It

is used to select the output variables

that will be stored as the simulation

executes which can then be examined

once execution is complete.

 Notes tab

Is always visible. It allows the user to

annotate the Simulation window.

 Management Script tab

Becomes visible when the user selects a

Manager module in the Models tab. It

is used to enter the management script

for that module.

 Logging tab

Is always visible. Use the options in the

Logging tab to set up error and trace

logging for the simulation. When trace

file logging is turned on the tab will

include an icon as a visible warning.

When running multiple simulations

with management events, errors or

messages will be logged. These must be

saved to unique files.

AusFarm Tutorial | 17

 Analysis tab

Becomes visible when the user selected

the Simulation module (i.e. the module

at the top of the model configuration

tree). It allows the user to modify the

factor levels in a simulation analysis

and to design one or more reports that

will be generated after the simulation

or analysis is executed.

 Running a Simulation

The last step before running the simulation is to set the date range over which it is to be
run. If you wish you can lengthen the run period. Now check that the report option is
chosen as below:

 This is an Analysis so use this run button to execute the simulation.

While the simulation is executing, an indicator appears on the upper pane of
its window showing the progress of the calculations.

The Run button on the upper pane of the simulation window will be replaced
by the Stop button. Clicking the Stop button halts execution of the simulation.

After executing this simulation, the chosen report will be displayed.

18 | AusFarm training manual

The AusFarm report window

The report is made up of multiple charts. If you single click your mouse on a chart an

advanced editor with appear. From this window you can manipulate the chart and even

drill down into the data that is used to generate the chart.

Changes that you make on this dialog will be copied back to the main report when you

click the OK button. The Edit… button opens an even more detailed window where you

can view the data, export the data or change detailed chart layouts.

AusFarm Tutorial | 19

 The Results Window

The Simulation results option will open the Simulation Results window in the same way

that the main toolbar option does. From there you can choose which outputs you wish

to see.

The Simulation Results window in AusFarm is used to select results from simulations and

to format them for display in reports. It is a quicker way of displaying outputs in an

adhoc way where a complete report template is not needed.

 Open the Simulation Results window by

clicking the Results button () on the main

toolbar or choosing the Simulation Results

option from the drop-down list as shown here

and then click the chart button .

All variables available for reporting from all completed simulations are shown in the
tree at the left of the Results window. To see the output files, modules and variables
below a node in the tree, click on the expand button by the node's name. To hide
them, click on the collapse button.

 Generating a chart

 Select the cover_green and cover_tot variables by clicking the check boxes next
to their names in the tree.

 Change the data treatment to “Long term average” and set the date range to be
1 Jan to 31 Dec.

 Change the time interval to 3 days

20 | AusFarm training manual

 Check the Choose custom series colours box.

 For each selected variable, click on the Colour column and select a colour for the
variable’s data.

 Click on the Style combo box and examine the options. Set the chart style as
Stacked bar.

 Click the Chart button. A Report window will be generated containing a chart
something like this:

Click on the chart. The Edit Chart Properties dialog will appear:

If you resize this window or change any chart formatting and then click OK, the changes

will be displayed on the report page. Click on the Edit... button and explore the options

for formatting the chart.

AusFarm Tutorial | 21

 Generating a table

 Return to the Results window.

 Click on the Clear all button to clear any selected variables.

 Add the maxt and rain variables to the selected list. Set the aggregation of the
rain variable to “Sum” and the aggregation of maxt to “Maximum”.

 Choose the Data over period option.

 Click the Table button. A Report window containing annual total rainfalls and
yearly maximum temperatures will be generated:

Output display in AusFarm comes in two kinds: tables and charts. The process for

generating these in reports follows the same general set of steps:

22 | AusFarm training manual

 Select the variables that are to be presented in the report.

 Specify the data treatment that is to be applied to all variables.

 Specify the aggregation to be used for each variable within each time interval. This

step is only required if a time interval greater than one day is used.

 Click the Chart or Table button to generate a Report window.

 Data treatments

The values of variables that are output from an AusFarm simulation can be treated in a

variety of ways. In the Results window, the following data treatments may be selected

when producing charts or tables:

Simple

A simple presentation just presents the values of the selected output over

time.

Long Term

Average

For each day of year, an average value of the variables is computed over all

the years in the course of the simulation. In a chart, therefore, the X-axis

shows days (or months) of the year, e.g. 1 Jan, 2 Jan etc; the Y-axis gives the

values of the output.

Average

over years

As for the Long Term Average treatment, but the average values are

computed over the selected range of years from the simulation.

Percentiles

The user nominates up to five percentile levels for display.

For each day of year in the nominated range, the output values for all the

years in the simulation are ranked. The value corresponding to each

percentile level is then computed. The values for each percentile level over

time are presented as the output series.

AusFarm Tutorial | 23

A point (x,y) on the zth percentile graph should be read as follows:

On day-of-year x a value less than or equal to y will be encountered in z% of

years.

The X-axis of a percentile chart shows days (or months) of the year, e.g. 1

Jan, 2 Jan etc; the Y-axis gives the values of the output.

Data for

period

For this treatment, the user nominates a range of days of the year and also

a range of years.

For each year in the range, an aggregated value is computed over the range

of days and these summary values are presented.

The X-axis for a Data for period graph is the year, e.g. 1978, 1979 etc; the Y-

axis gives the variable values.

To view values for a single day of year, select a time interval of one day in

constructing this range, e.g. 15 Apr to 15 Apr.

Data over

period

As for Data for period, but summarized over all years in the simulation.

P.D.F. for

period

P.D.F. stands for probability density function. The Y-axis shows the

frequency of occurrence (0-100%) for each of the classes on the X-axis. The

user nominates a range of days of year. AusFarm then aggregates the

selected variables over these days for all years of the simulation and

allocates them to a class. The class boundaries are determined by taking the

range of values and dividing it into five or ten equal classes, depending on

the number of years involved. A PDF graph with value y should be read as

follows:

There is a probability y that the selected output will fall within the class

given on the X-axis.

24 | AusFarm training manual

C.D.F. for

period

C.D.F. stands for cumulative distribution function; to be precise, this

presentation shows probabilities of exceedance. The X-axis of a C.D.F. graph

shows the range of output values and the Y-axis gives the probability that in

any year, the value of the output will be greater than a given level. The set

of outputs used to estimate these probabilities is computed as for a P.D.F. A

point (x,y) on a C.D.F. graph should be read as follows:

There is a chance y that the output variable will be greater than a value of x

at the given time of year.

AusFarm Tutorial | 25

5. Configuring a new simulation

 Configuring and Initialising Modules

The first major step in constructing a simulation analysis in AusFarm is to configure the

simulation by adding the set of component modules in the simulation and describing

their inter-relationships.

Before configuring a simulation, the user should consider what set of processes needs to

be included in the simulation to answer the question of interest. The configuration that

is chosen should be the simplest that meets this criterion.

Building a simulation from scratch can be an involved process. Any of the components

from the model palette can be dragged and dropped onto a model tree in a simulation

window. The following instructions will use an existing simulation and go through the

configuration process to show how a simple simulation can be configured.

 Close any existing simulation and select the File | Reopen menu option and choose

the Example.afs simulation.

 In the example simulation click on the water module in the Models tree and then on

the Initialise tab. Fields of records and elements of arrays are organized into a tree-

structure, as shown in the figure below:

The Initialise tab can be seen in the right-hand pane of the simulation window. It

contains a grid in which each row represents a variable (or part of a variable), and there

are columns that display each variable's type and name, initial value, and (optionally)

units, default value, and minimum and maximum permitted value. The type of each

value is shown by the icon next to the variable’s name.

26 | AusFarm training manual

 The initial values (in the Value column) can be edited. Press F2 or click twice on a

value (leave a gap between the clicks). This activates an editor that allows you to

change the value. (Don’t change anything now.) Press Enter to deactivate the editor or

an arrow key to move to another value. Array items shown here can be resized by

right clicking on them and choosing Add or Resize.

The easiest way to specify the initial values of a module is by using its initialisation

dialog. Each component in the default AusFarm distribution has its own dialog.

 Open the initialisation dialog for the Weather module by double clicking on its icon

in the Model tree.

The Weather module is responsible for specifying the input weather data and some
further options about CO2 levels. SILO format weather files can be selected here.

 Close the dialog and open the dialog for the Paddock.

The Paddock module allows you specify the area and slope of the paddock.

AusFarm Tutorial | 27

 Examine the Stock initialisation dialog by double clicking the Stock module in the
Model tree:

The Stock dialog shows that two genotypes are described using some parameters that

specify breed characteristics. Any of the breeds found in the Breeds dropdown list can

be used in the simulation. If you redefine a breed here it will use the parameters, you

have set.

 Close this dialog and then open each of the remaining dialogs in the simulation to

get a view of the initialisation requirements for these sub-models.

The Manager module is another special component. When you select it, you will see the
management script that controls much of the behaviour of the simulation.

 Examine the management script by clicking on the Manager module in the

simulation tree. It contains a variety of different elements.

 Definition statements create variables that can be used in other places the script.

 Time specifiers determine when rules should be executed.

 References to external variables allow the rules to be influenced by the state of
the simulation.

 Events change the state of other modules.

28 | AusFarm training manual

 Control rules govern the order in which events are executed.

 Assignment statements set the value of defined variables.

 The Notes and Logging tabs

 Click on the Notes tab in the right-hand pane of the simulation window.

This tab contains an area where you can document the purpose and features of your

custom simulation in text form.

 Click on the Logging tab in the right-hand pane of the simulation window.

This tab contains options that allow details about the execution of a simulation to be

examined once it has been run. (Using the trace option adds significant time to the

simulation run and should only be used when there is an internal problem with the

simulation structure that must be solved.)

AusFarm Tutorial | 29

 Sequencing the simulation

The modules in the simulation will have some default sequenced events triggered during

the execution of the simulation. If multiple Manager modules or multiple TextOut

modules are included in the simulation, it may be necessary to adjust when their logic is

processed within the daily timestep. Each module can have the timing of its default

subscribed events adjusted individually, but it is also possible to view the sequencing of

whole simulation.

 Right click the mouse on the top node of the model tree and choose Sequence.

The editing dialog has two tabs. The first one gives a view of the whole simulation

ordered by the sequence number in the timestep. The second tab allows editing of the

30 | AusFarm training manual

values. The default value is shown next to each custom value. The range is from 0-9999.

If you want to turn off the automatic sequencing of the event shown, then uncheck the

checkbox in the tree for that event.

In the example below you can see that the manager management script will have its

logic processed before the Output component no matter where it resides in the model

tree.

Care should be taken when adjusting the sequencing. Changing options here can easily

‘break’ your simulation! However, this is a powerful feature of AusFarm that allows you

to fine tune the sequence of many components such as when the simulation contains

multiple Manager components.

Manager components also show their sequence when you hover over them in the

Models tree. This is very useful when the simulation contains more than one Manager

component.

AusFarm Tutorial | 31

 Selecting and Storing Outputs

When a simulation is run, AusFarm can store the values of variables over time so they

can be shown or summarized in a report. Before variables can be used in reports, they

must be selected as part of an Output module.

 Select the Output module by clicking on its icon () in the Models tab of the
simulation window.

The Output component is a special case in an AusFarm simulation. When you select the
item in the model tree you are shown many of the variables that can be used for
reporting. The Outputs tab will replace the Initialise tab in the right-hand pane.

If you want to filter the list of variables by name you can start typing the name in the

Look for: text entry. It is also possible to filter the list to only show the outputs that are

selected. These filters can be used together if required.

The Outputs tab contains a grid containing variables that are organized into a tree-

structure.

32 | AusFarm training manual

 Click on the expansion button () by the Weather module’s icon in the Outputs tab.
A list of the output variables of the module will be revealed.

 Scan down through the list of variables and expand the variable named weather to
see its fields.

 Check that the cover_green, cover_tot variables are selected for output. Type cover
in the filter text entry.

For the floating point variables, the number of decimal places to be displayed can be
chosen here.

When an array type is selected, all its elements will be accessible for display.

The Aggregation and Alias columns can be ignored in most situations.

The output file location can be modified from this tab. It is good practice to have this file

name match that of the simulation file. It is possible to run more than one simulation

simultaneously. To do this the output modules must save their outputs to different files.

(Note that AusFarm results files are Microsoft Access or SQLite data bases, but the data

is stored in a compressed binary form and can be exported after the simulation run if

the data needs to be summarised using any SQL processing.)

5.4.1 Exporting results

When using the database

output component, it is

possible to export the results

from a simulation or Analysis

run into a single database.

This is useful for collating the

results from the simulation

runs into a database that can

be queried using SQL.

 Right click the mouse on

the output component

and choose Export

outputs. There are three

storage formats

available. Choose SQLite.

When the outputs are

exported into a database, they can be opened by the respective client tool. For SQLite

databases a useful application is SQLiteSpy.

 Install SQLiteSpy and then you will be able to open a database and view data as

shown below.

AusFarm Tutorial | 33

Viewing the results using SQLiteSpy

HDF (similar to NetCDF) format is also available. This requires a HDF viewer. When using

MS Access, the normal Microsoft Access database program will be able to open this

database.

When exporting data from an Analysis run, the records will have the name of the

treatment in the first column.

5.4.2 Using the TextOut component

If output from the simulation run is preferred in tab delimited text file format, then the

TextOut component can be used. It is available in the model palette. Once this is placed

in the simulation, variables can be selected for this component using its inbuilt

component dialog that you can access by double clicking on the component.

 Add a TextOut component to the simulation by dragging the icon from the model

palette and dropping it on the top item (Example) in the model tree.

 Edit the filename property and type in a name for the output file.

34 | AusFarm training manual

Selecting output variables

There are two easy methods for adding component properties to the outputs list of

TextOut modules.

1. When a TextOut module is selected, the Variables tab becomes visible. From

there the modules in the model tree can be expanded and properties can be

chosen by right clicking on them and added to the output list for any TextOut in

the simulation.

 Right click on a

property and

then choose the

TextOut

component that

the variable will

added to.

AusFarm Tutorial | 35

2. Another method of adding variable to TextOut modules involves having an

Output module (database version) in the model tree.

When you select the Output module, the selection tree will become visible in the right-

hand panel. From here the variables can be filtered if required. Any variable can dragged

and dropped, using the mouse, onto a TextOut module.

Once a simulation has been run and outputs stored in a text file, right clicking on the

TextOut module and choosing View text output, will allow you to open the resulting text

file from the AusFarm user interface.

A third way of selecting variables to be stored by TextOut is when you double click on

the TextOut module a dialog will open where you can specify each variable you want to

store.

36 | AusFarm training manual

Reporting at custom points in the simulation

If you need to store values at times other than daily, monthly or yearly it is possible to

tell the TextOut module explicitly when to store it’s outputs. From a Manager script you

can call the update_outputs event as shown below.

Then it is important to turn off the automatic sequencing of the event. Right click on the

TextOut module in the Models tree and select Sequence. From the configuration dialog

turn off the sequence as shown.

The TextOut module will then report it’s variables now only on the 25th Dec each year.

This configuration is useful if you want to report only on special events in the simulation.

 Comparing initial values of components

It is often useful to compare the initial values for like components in a simulation or

between simulations. Using the clipboard to copy the first module in the model tree and

then choosing the Diff menu option on a second module will invoke a difference viewer.

 A file difference viewer such as the free WinMerge package would be adequate.

Download this software and install it first.

 Configure the settings in the AusFarm Options dialog for the Difference viewer.

AusFarm Tutorial | 37

 From the model tree select a module and then right click and select the Copy

option from the popup menu.

 Open another simulation or from within this simulation select another module in

the model tree of the same type and right click the mouse. The popup menu will

38 | AusFarm training manual

now have an extra option, Diff with.... Choose this option and the external

viewer will show the differences between these modules.

For Manager script modules, the text will be plain text as seen in the Manager Script

editor. For other modules, the SDML script in XML form will be shown. Although a little

cryptic this is still a useful means of checking for differences. Because this differencing

technique uses data stored in the clipboard, it is easy to do comparisons between

modules in different simulations.

An example of comparing two Manager scripts.

AusFarm Tutorial | 39

6. Specifying Management

Management activities in AusFarm simulations are represented as a series of events that

change the state of the various biophysical models that make up the simulation. For

example, irrigation is represented as an event that changes the amount of water present

in the soil profile, and the selling of livestock is represented as an event that changes the

number present of a specific group of animals in the simulation.

Each module has a defined set of management events that can be applied to it. When

and how these events take place is specified using one or more Manager modules. Each

Manager module contains a management script composed of statements that describe:

• When and under what conditions events are to be executed;

• Which module(s) are to execute an event;

• The parameters that determine exactly what happens when the event takes

place.

In the real world, the timing and nature of management activities often depend upon

the current state of the system. For example, irrigations (events) might be scheduled to

take place only when the soil water deficit (part of the system state) is greater than a

nominated threshold. Management scripts can respond to the state of the simulation by

accessing variables from the rest of the simulation. The values of these variables can

then be used to specify event parameters and the conditions that determine whether

events take place. They can also be combined into expressions and defined variables

that may then be used in management rules.

To develop management scripts, it is important to have a good understanding of the

variables and events that are available in the simulation.

 Variables

In AusFarm, the variables of each module are used to represent the quantities used in

the equations and events that the module embodies. A “variable” in AusFarm includes a

wide range of quantities from a modeller's point of view, including:

State

variables

Quantities that may vary in time as the simulation is computed. The

value of a state variable must be known in order to compute the

dynamics of the module to which it belongs.

Constants Quantities that are (i) invariant in time and (ii) have the same value in all

modules of all simulations.

40 | AusFarm training manual

Parameters Quantities that are invariant in time, but may take different values in

different modules, either within a simulation or between simulations.

Driving

variables

Quantities that are stored externally to a given module but must be

known in order to compute the dynamics of the module. They may (and

usually do) vary in time. Each driving variable must have one or more

sources; a source must be an output variable from another module.

Output

variables

Quantities that may be accessed by other modules in the simulation,

including for storage as results or for use in management scripts. Output

variables may be state variables, constants or parameters, but may also

be "summary" variables computed from them.

The variables that drive the simulation as a whole (e.g. weather data)

also appear as the output variables of modules that read them in.

Every variable in AusFarm has a name, a type, and a value. When referring to a variable,

its name may be qualified to ensure that the reference is not ambiguous: for example,

the sw variable within the paddock3.water module may also be referred to as

paddock3.water.sw.

The value of a variable can change through time as the simulation is executed. The initial

value of each state variable and parameter must be provided by the user in order for the

simulation to be computed; these two types of variables are known as initialisation

variables.

Variables come in three main kinds, or types: scalars, arrays and structures.

Scalars have a single value. There are four types of scalar variables:

Real Can be any numeric value. When writing a real value in a management

script, either decimal notation (e.g. -63.45) or exponential notation (e.g.

1.46E-5) may be used.

Integer whole values: ...-4, -3, -2, -1, 0, 1, 2, 3, 4, ...

Text may contain any text (i.e. zero or more characters). When writing a text

value in a management script, the characters are surrounded with single

quotes (e.g. 'xyz') to distinguish them from references to variables, which

are written without quotes. To place a quote character in a text value,

write two quotes: for example, writing 'quote('')' gives the value

quote(').

AusFarm Tutorial | 41

Logical variables are either true or false. A true value is written as TRUE in a

management script, while a false value is written as FALSE (this is case-

insensitive)

Arrays are ordered lists of variables in which all the members (known as elements) are of

the same type. When writing an array in a management script (the Manager module),

the elements are surrounded with square brackets ([]) and successive elements are

separated from one another with commas. The name of the n-th element of the array

named array is array [n] (n is known as an index). The first element of an array

has index 1. Below is an illustration of what an array looks like in a Manager component

script.

define integer x[8] ! An array of integers called x

set x[6] = 99 ! Refer to the 6th element of array x

Structures are lists of variables in which the members (known as fields) may be of

different types. Since each field of a structure is itself a variable, it has a name and a

type. When writing a structure value in a management script:

• the structure is surrounded by brackets (());

• successive fields are separated from one another with semi-colons; and

• the value of each field is preceded by its name and a colon.

To refer to a field of a structure variable in a management script, append the field name

to the structure name, with a colon between them (e.g. seeds:soft_ripe).

define s = (field1:8; field2:'fox'; field3:- 99.9) ! A structure with three fields

set s:field2 = 'jumps' ! Refer to the second field of structure s

 Events

6.2.1 Management events

A management event of a module represents an instantaneous change in the module’s

state variables. Each event has zero or more quantities, known as parameters, which are

used to specify exactly how the module’s state variables are changed.

For example:

Application of irrigation water to a soil can be represented as an event that changes the

amount of water present in the soil profile. The amount of water applied, and the rate of

application are parameters that affect how the added water will percolate into the soil.

42 | AusFarm training manual

The selling of livestock is an event that changes the number of a specific group of

animals that are present in the simulation. The group of animals to be sold, and the

number to sell are the parameters of this event.

An event is specified in a management script by giving its name, followed by the value of

zero or more parameters. Each parameter is written by giving its name, followed by an

equals sign (=) and an expression that is computed to give the value of the parameter

(see section 15.3 for more information about expressions).

! Send the "shear" event (with no parameters) to all modules that accept it.

shear

! Send the "buy" event to a specific module named "cattle".

! Four parameters are given, with a space between the event name and first parameter

! and commas between the parameters.

! Note how the "number" parameter is specified as an expression that must be evaluated.

cattle.buy number=0.5*stock_rate*paddock1.area, sex='steers', age=8.0, number=200.0

More detail about specifying events is given in section 15.2.

6.2.2 Sequenced events

The rate equations of components are also implemented as software events, known as

sequenced events. Each sequenced event is computed once per time step. AusFarm

handles the setting up of the sequenced events automatically.

These events are called "sequenced events" because the order in which they are

computed can affect the simulation's results. For example, if a Weather module

executes the logic that reads in the temperature data for a day after a plant growth

module uses the temperatures to compute growth of the plants, the resulting growth

rates will be different to those obtained if the weather data are read in before the

growth computations.

The order of computations within each time step is known as a simulation's sequencing.

The order is expressed by assigning a positive integer value (its ordering) to each

sequenced event in a simulation: an event with a lower ordering is executed before one

with a higher ordering. The order in which events with the same ordering value are

executed is left unspecified. Ordering values are only meaningful relative to one

another. AusFarm configures default sequencing for each simulation. This default only

needs to be changed under special circumstances.

Note: In terms of their implementation as software, there is no distinction between a

sequenced event and a management event, except that sequenced events may not have

parameters. The distinction between them arises from the purpose of the event code.

AusFarm Tutorial | 43

 Discovering the Variables and Events for Modules

The variables and events that can be used in Management scripts are specialised for

each module in the simulation. To discover these, it is done through the component

palette on the main toolbar in AusFarm. The first option to use is the Info menu item.

The component information dialog for the Stock component

44 | AusFarm training manual

The information dialog shows all properties and events for a chosen module. Each

property will have a name, accessibility, type and description. If the property is a

structure it will show the fields and their types. Events will show the parameters used to

pass values to the module.

Another way to get access to all the module detail is using the help system. From the

same menu on the main toolbar the help pages can be opened.

AusFarm Tutorial | 45

The help file for the Stock component

46 | AusFarm training manual

7. Contents of Manager Scripts

Manager component scripts are basically just a collection of statements. These

statements include:

• Time specifiers

o Prescribe when rules should be executed

o They are optional but used frequently

• Rule statements

o Event rules trigger simulation events

o Assignment rules set values of variables or module properties

o Control statements control process flow

o Subroutine calls access shared code

• Subroutines

o Contain common/shared code

• Event handlers

o Executed when an event occurs in another module

• Comments

o Always use comments! They make your scripts maintainable.

 Time specifiers

Each rule statement has two main parts: a time specifier and a rule. The time specifier

denotes the set of time steps on which the rule is to be evaluated. The time specifier is

optional; if it is not given, the rule is evaluated on each day of the simulation.

Examples of time specifiers are:

on 1 Apr 1980 ! single date

each 25/7 ! 25 July in each year

from start to 31 Dec 2001 repeat 7 days ! weekly from the start date

from 15 Feb to 15 Apr repeat 1 month ! weekly

on finish ! on the last timestep of the

simulation

When giving a date or day-of-year in a time specifier, the month may be given as either a

month number (1 to 12) or as a three-letter abbreviation. Years should be given with

four digits.

AusFarm Tutorial | 47

 Rules

Rules come in four main types:

1. Event rules cause management events to be transmitted to the rest of the simulation.

2. Assignment rules change the value of a variable.

3. Control rules are used to control the order in which other rules are executed. There

are four kinds of control rule: rule lists, conditional rules, FOR loops and WHILE loops.

Every control rule contains one or more sub-rules, which may themselves be control

rules. A rule statement may therefore be made up of a nested set of rules, as shown in

the examples below.

4. Subroutine calls, used in conjunction with subroutine definitions, can be used to

invoke combinations of rules that may need to be used repeatedly.

7.2.1 Event rules

An event rule is specified by giving the name of the event together with zero or more

parameters, which are separated by commas. The number of parameters and their types

depend upon the event (see section 16 for details). The event name may need to be

qualified to inform the simulation which module (e.g. paddock or pasture species) it is to

apply to.

It is the rule-writer’s responsibility to ensure that events are specified with the correct

parameters and that parameter expressions are of the correct type.

Parameter values may be given as constants, but they may also be given as expressions

that are evaluated to provide the value of the parameter (see section 15.3).

When specifying an event, it is usually possible to give fewer parameters than set out in

section 16. In this case the remaining parameters are assigned a default value which is

usually zero, FALSE or the null string according to type.

Examples of event rules are:

paddock3.ryegrass.sow rate=10.0 ! Note use of qualifier

move group=2, paddock='paddock3' ! Unqualified – only livestock have "move"

 ! Note the single quotes around the string

buy 'wethers', 10*paddock1.area, 18.0, 50.0 ! No parameter names-legal but difficult to

 ! read. Note the use of an expression in a

 ! parameter.

7.2.2 Assignments

Assignment rules change the value of a variable. This variable may be one that has been

defined within the manager script (see section 3.4) or it may be one of a subset of state

variables that may be reset from the manager. Assignment rules take the form

48 | AusFarm training manual

set name = value variables defined within the manager script

reset name = value state variables of other modules

where name identifies the variable and value is an expression that gives the new value

for the variable.

It is the rule-writer’s responsibility to ensure that the name refers to a variable defined

within the management script, and that the value is of a type that is compatible with the

variable to which it is to be assigned.

Examples of assignments are:

set x = 10.0

set w = w + number[i] * weight[i] ! Part of getting a weighted average

set pasw[i] = 0.0 ! Assignment to an array element

reset paddock1.clover.fertility = 0.85 ! Assignment to an external variable

7.2.3 List or block of rules

Lists of rules group one or more rules together, ensuring that they are evaluated in

sequence. This is formed by surrounding the sub-rules with curly braces {} and

separating the sub-rules, either with a semicolon or by placing them on separate lines.

An example of a list of rules is

{

 set x = 99.0 ! A rule on its own line

 set g = 6; set p = 'paddock1' ! Two rules, separated by a semi-colon

 move group=g, paddock=p ! Same as "move 6, 'paddock1'"

}

It is possible for lists of rules to be nested several levels deep; as a result it is beneficial

to indent them neatly.

7.2.4 Control Statements

Conditional rules

Conditional rules take one of two forms:

if condition sub-rule

if condition sub-rule1 else sub-rule2

The “condition” is an expression that evaluates to a logical value (TRUE or FALSE).

When the rule is evaluated, the value of the condition is computed. If it is true, then the

first sub-rule is evaluated. Otherwise, if the else keyword and second sub-rule have

been given, the latter is evaluated instead. If the condition is false and there is no

second sub-rule, then the manager moves on to the next rule.

AusFarm Tutorial | 49

Expressions with numeric values can be used as the condition in a conditional rule. In

this case, any value other than zero is taken to mean TRUE and a zero value is taken to

mean FALSE, in accordance with the type-conversion rules.

If the first sub-rule is not a list rule, it must be placed on a new line.

Examples of conditional rules are:

if x < 10.0 { set x = 10 } ! Same as "set x = max(x, 10.0)"

if b ! OK to put sub-rules on a new line

 paddock1.water.irrigate amount=20.0 ! This is sub-rule1

else

 paddock1.water.irrigate amount=10.0 ! This is sub-rule2

if sheep.tag_no[i] = 1 ! Here the sub-rule is a list rule

{

 sheep.shear group=i ! Sell animal group "i" off-shears

 sheep.sell group=i, number=sheep.number[i]

} ! Neatly indented...

FOR loops

FOR loops take the form:

for variable = start to end sub-rule

In this rule, variable must be an integer variable defined within the manager script

and start and end are expressions that should evaluate to integer values. When the

rule is evaluated, the values of start and end are evaluated. The sub-rule is then

evaluated repeatedly, with the nominated variable set in turn to each of the values

start, start +1 ... end.

• If the sub-rule is not a list rule, it must be placed on a new line.

• If the value of start is greater than the value of end, the sub-rule is not evaluated.

• It is inadvisable to set the value of the control variable within a FOR loop.

• At the end of the FOR loop, the value of the control variable will be set to end+1.

The examples of the FOR loop shows how to handle two common situations:

 the case where a task must be performed for each group of animals in a Stock
module

 the calculation of a summary variable from one or more arrays.

for i = 1 to animals.no_groups

 sheep.move group=i, paddock='paddock2'

set pasw = 0.0

50 | AusFarm training manual

for i = 1 to no_layers ! Will only work for a single-paddock

{

 set layer_asw = max(0.0, sw_dep[i]-ll15[i]) ! system (variables are unqualified)

 set pasw = pasw + layer_asw ! Sum over layers of "layer_asw"

}

WHILE loops

WHILE loops take the form:

while condition sub-rule

The condition is an expression that evaluates to a logical value. When the rule is

evaluated, the value of the condition is computed. If it is TRUE, then the sub-rule is

evaluated. The condition is then evaluated once more, and if it is still TRUE, then the

sub-rule is evaluated again. The sub-rule is repeated until the condition evaluates to be

FALSE. If the condition is FALSE when it is first evaluated, the manager moves on to

the next rule.

It is the rule-writer’s responsibility to ensure that the sub-rule will eventually cause the

condition to become FALSE. If not, the loop will continue to be evaluated indefinitely

and the program will have to be terminated from the Task Manager.

Because of the above, it is usual for the sub-rule in a WHILE loop to be a list rule.

If the sub-rule is not a list rule, it must be placed on a new line.

An example of a WHILE loop is:

set i = 10

while i > 0

{

 set x = x + i

 set i = i – 2 ! Change a term in the condition...

}

7.2.5 SUBROUTINE calls

Subroutines may be defined which allow a group of rules to perform a specific task while

remaining relatively independent of other portions of the code. Parameter lists may be

used to transfer values to a subroutine; within the subroutine, the parameters are

treated as const variables. Although one subroutine may call another, recursion is not

supported (that is, a subroutine may not call itself). Rules within subroutines may access

variables defined within the manager script and “external” variables from other

modules, just as ordinary rules may do. Additional variables may be defined within a

subroutine; such variables have “local” scope and may be used only within the

subroutine where they are declared.

AusFarm Tutorial | 51

SUBROUTINE definitions take the form:

subroutine subroutine-name (parameter-list) { rule-list }

Calls to a subroutine take the form:

call subroutine-name parameters

An example of a subroutine definition and subsequent call is

subroutine join_ewes (ram_breed: string; no_days: integer)

{

 define integer group ! A variable of local scope, used as a loop counter

 for group = 1 to animals.no_groups

 if (animals.tag_no[group] = MATURE_EWE)

 animals.join group=group, mate_to=ram_breed, mate_days=no_days

}

each 1 Mar

 call join_ewes ram_breed = 'Small merino', no_days = 30 ! Parameters values are passed

 ! to a subroutine by using

 ! the same syntax as event

rules

7.2.6 Indirection

Indirection is useful for referring to entities such as modules or module properties or

events based on a list of text values. The @() operator converts a text string into a

reference to a module or property.

In event names:

@(module-name-expression).event

In expressions:

@(variable-name-expression)

Indirection is almost always used inside an iteration and/or a conditional statement that

provides the context.

Selecting a module in a paddock in order to perform an event on it

padd_name[1] = 'paddock1'

padd_name[2] = 'paddock2'

padd_name[3] = 'paddock3'

for padd = 1 to 3

 @(padd_name[padd]).grass.kill propn_herbage=1.0, propn_seed=0.0

Building arrays of summary variables across paddocks

52 | AusFarm training manual

for padd = 1 to no_paddocks

{

 set padd_deep_drain[padd] = @(padd_name[padd]&'.water.model.drain')

 set padd_cover[padd] = @(padd_name[padd]&'.cover_tot')

 set farm_area = farm_area + @(padd_name[padd] & '.area')

}

7.2.7 Event Handlers

By default, management rules are evaluated at each time step of the simulation, but it is

also possible to define sets of rules which are evaluated in response to events issued by

other components within the simulation. Data associated with the triggering event are

passed to the handler via a parameter list. Units of measurement may be specified for

each parameter. The declared data types and units of parameters must be compatible

with those provided by the component sending the event.

EVENT HANDLER definitions take the form:

on_event event-name (parameter-list) { rule-list }

Here is an example of an event handler:

define real avgt

define real peak_radn = 0.0

on_event Weather.newmet (today:real; radn:real 'MJ/m^2'; maxt:real 'oC'; mint:real 'oC';

rain:real 'mm'; vp:real 'hPa') ! NOTE: The entire parameter list must be on a

 ! single line. It is shown here as wrapped only to

 ! allow it to fit within the page

 {

 set avgt = (maxt + mint)/2.0 ! Calculate a daily mean temperature in response

to a

 ! 'newmet' event

 set peak_radn = max(radn, peakradn) ! Keep track of the maximum radiation received

 ! on a single day

 }

7.2.8 Comments

Use comments to clarify your intentions in the script. Make your code timeless!

AusFarm Tutorial | 53

Comments can be multiline as above, end of line or embedded in code.

Multiline comments are wrapped by /* */ characters. Use this technique for

embedding comments in the middle of lines also.

7.2.9 Manager Script Expressions

Scripts contain lines of code that are called expressions. These expressions can include

constants, variables, operators, and functions.

• Constants
o Identifiers that have fixed values

• Variables
o Identifiers that are changeable in value

• Operators
o Perform arithmetic processes, relational tests, logical joins

• Functions
o Access to common expressions and algorithms

7.2.10 Constants

These identifiers are set once, and their value remains constant.

• Real-valued constants may be given in decimal or exponential format (e.g. 1.34,

6.77E-2).

• Integer-valued constants are given in decimal format (e.g. 999, -1).

• Text strings are always surrounded by single quotes (e.g. 'Hello, world'). The quotes

distinguish a text string from a reference to a variable.

• Logical constants are given as TRUE or FALSE (case-insensitive).

• It is possible to have constant values that are arrays. Each element of an array should

have the same type. To denote an array, surround it with square brackets [] and

separate each element with a comma:

54 | AusFarm training manual

define const REAL_ARRAY = [0.5, 0.6, 0.7, 0.8, 0.9]

define const FOX_ARRAY = [['quick', 'brown', 'fox'],

 ['jumps', 'over', 'the', 'lazy', 'dog']]

Note that in the second example, the array elements are themselves arrays, making a

two-dimensional array. (Note also that the sub-arrays need not be of the same length!)

A value may also be a structure, i.e. a collection of named sub-values called fields. To

denote a structure, surround it with brackets (), precede each field with its name

followed by a colon, and separate fields with semi-colons:

define const STRUCT_VAR = (text_field: 'quick'; real_field:99.9;

array_field:[1,2,3,4])

Typically, in an AusFarm script constants are written in all upper case to make visual

recognition easier.

7.2.11 Variables

Variables in expressions are referred to by name. A variable may be defined within the

manager or it may be any variable that can be accessed from the rest of the simulation.

Variable names may need to be qualified in the same way as event names.

The elements of an array variable or the fields of a structure variable can be referred to

using the forms array[index] and structure:field respectively. Since

elements in arrays and fields in structures may themselves be arrays or structures, these

references may be nested:

seeds[3]:unripe_soft ! Field "unrip_soft" within element 3 of "seeds"

foo[i,j] ! Same as foo[i][j]

7.2.12 Operators

The following operators may be used in expressions:

Arithmetic operators

AusFarm Tutorial | 55

+ Addition Numeric (integer if both arguments are integer, real
otherwise)

- Subtraction Numeric (integer if both arguments are integer, real
otherwise)

* Multiplication Numeric (integer if both arguments are integer, real
otherwise)

/ Division Real

^ Power Real

mod Modulus (remainder) Integer

div Integer division Integer

Relational operators

= Equal to Logical (TRUE or FALSE)

/= Not equal to Logical

< Less than Logical

> Greater than Logical

<= Less than or equal to Logical

>= Greater than or equal

to

Logical

Logical operators

and And Logical

or Or Logical

not Not Logical

Text operator

& Concatenation Text

Brackets () may be used to govern the order of evaluation of operators.

56 | AusFarm training manual

It is the rule-writer’s responsibility to avoid invalid arithmetic operations such as

divisions by zero.

Logical operators are frequently used in conditional statements like the above test.

7.2.13 Functions

A variety of functions are also defined for use in expressions. Arguments to functions

may themselves be expressions which are separated by commas, as in the following

examples:

Arithmetic functions Returns

max() Maximum Integer if all arguments are integer, real

otherwise

min() Minimum Integer if all arguments are integer, real

otherwise

sum() Total Integer if all arguments are integer, real

otherwise

Average() Arithmetic mean Real

exp() Exponential (ex) Real

ln() Natural logarithm Real

sin() Sine Real

cos() Cosine Real

atan() Arctangent Real

round() Round to nearest

integer

Integer

floor() Integer next below Integer if argument is integer, real otherwise

Text functions Returns

max() Maximum Text

AusFarm Tutorial | 57

min() Minimum Text

upper() Uppercase Text

lower() Lowercase Text

str()
Convert the value to text.

Optional second argument can be a format string or an
integer. An integer will specify the number of decimal
places to display in the converted value.

Format string: ‘4.3f’ or ‘2d’ where d is used for

representation of integer arguments and f for floating

point values.

Text

length()
Count the number of elements in an array.

Integer

Date functions Returns

dayofyear()
Return the day number of the year where Jan 1 = day 1.

e.g.

dayofyear(‘1-Jul’)

dayofyear(‘Dec-31’)

dayofyear(’12 Aug 1961’)

Where delimiters can be ‘-‘ or ‘ ‘ or ‘/’

Month names must be the first three characters from the
English month name.

The Year must be four digits. Where the year is not
specified a non-leap year is assumed.

Integer

datewithin() Checks if the day number is between two dates.

define logical inperiod = FALSE

define integer istart = dayofyear('15-Dec');

define integer iend = dayofyear('15-Feb');

set inperiod = datewithin(day, istart, iend)

Returns true if
the date is
between either
date or equal to
either date.
Allows for the
start and end
period including
1 Jan (wrapping
over the start of
the year).

Other

resize() Resize an array

Examples:

The array with
the new size.
New scalar
elements will be

58 | AusFarm training manual

set array1 = resize(array1, 5)

! where array3 is a two dimensional array

set array3[1] = resize(array3[1],

Length(array3[1]) + 1)

initialised to
zeroes or empty
strings.

pos() Checks the array or string for the position of an item.

 define text array[3] = ['one', 'two',

'three']

 set p = pos('three', array) ! 3

 define double darray[3] = [0.1, 0.11, 0.111]

 set p = pos('0.1', darray) ! 1

 define text astring = 'lo1g text form'

 set p = pos(1, astring) ! 3

 define integer iarray[3] = [1, 11, 111]

 set p = pos(11, iarray) ! 2

An integer value
specifying the
index. Zero is
returned if the
item is not
found.

If the expression parser encounters an argument to a function or operator that is not of

the required type, it will attempt to convert it according to the following rules:

From To

Real Integer The value is rounded off.

Real Logical The value will be converted to TRUE if non-zero and to FALSE if

zero.

Real Text If the absolute value is less than 0.000001, the value is converted

to a string using exponential format (e.g. 1.23763567E-8).

Otherwise it is converted using decimal format, with enough decimal

places to ensure that 6 significant figures are displayed. At least one

decimal place is always given.

Integer Real The same value is returned.

Integer Logical The value will be converted to TRUE if non-zero and to FALSE if

zero.

Integer Text The value is converted to its decimal representation.

AusFarm Tutorial | 59

Text Real The string value will be parsed into a number. If it cannot be parsed,

the simulation will halt.

Text Integer As for text-to-real conversion.

Text Logical The value will be converted to TRUE if the string equals 'true'

(case-insensitive) and to FALSE otherwise.

Logical Real TRUE is converted to 1.0 and FALSE to 0.0.

Logical Integer TRUE is converted to 1 and FALSE to 0.

Logical Text TRUE is converted to 'true' and FALSE to 'false'.

Variable values are obtained from the rest of the simulation as the expression of which

they form a part is evaluated. As a result, if a variable value changes in response to a

manager event, its value in any expressions evaluated subsequently will be the altered

value, even within the same time step.

 Definition statements

As noted above, expressions may use variables that are defined as part of the manager

script. Before such variables are used, however, they must be defined using a definition

statement.

A definition statement begins with the keyword define, followed by one or more

variable definitions separated by semi-colons. Each variable definition consists of a

variable name, which may be preceded a type specifier, and followed by an initial value

for the variable. The definition may further be preceded by one of the qualifiers const

or volatile. If the const qualifier is present, the variable must be assigned an initial

value; otherwise, the type specifier and initial value are optional. Any subsequent

attempt to modify the value of a variable defined with the const qualifier is regarded

as an error. The volatile qualifier is used to indicate that the value of the variable

may be set by other components.

An initial value for a defined scalar variable can be the result of an expression. Using an

expression such as a function like DayOfYear() is a typical use. See an example below.

Type specifiers are made up of one of the keywords real, integer, text or

boolean, optionally followed by one or more array lengths surrounded by square

brackets and separated by commas (see below for examples)

It is an error to define the same variable name more than once within a single manager

script. The only exception is that a “local” variable may be declared within a subroutine

using the same name as a variable outside the subroutine. When this occurs, all

references to that variable name within the subroutine refer to the “local” variable.

If a variable name is defined within the script that is the same as an “external” variable,

the name will be taken to refer to the manager variable when it is used in expressions.

60 | AusFarm training manual

If the type specifier is omitted, the type is inferred from the initial value. If no initial

value is given, the type of the variable is taken to be the same as that of the preceding

variable in the list of definitions. For the first variable in a list, it is taken to be a real

number.

The initial value is preceded by an equals sign. It is specified in the same way as a

constant in an expression (see above).

If no initial value is provided, then the initial value of the variable is set as follows:
 numeric values are set to zero
 text values are set to the empty string
 logical values are set to FALSE.

Here are some examples of definition statements:

define x = 0.0

define x ! Same as the previous definition

define integer i; j; k ! All are integers

define integer m; n; text t ! Different types within one statement

define breed = 'Angus' ! Text variable (type inferred from initial

value)

define volatile z = -999 ! Integer variable (type inferred from value)

 ! which may be set by other components

define const real pi=3.1415926 ! Real constant

define const integer sow_date = DayOfYear(‘1-May’)

define real x_arr[20] ! Array of real numbers

define real y_arr = [9.0,8.0,7.0,6.0] ! Also an array of real numbers

define real array2d[100,100] ! 2-dimensional array

define struct = (a:9.0; b:5; c:'string') ! A structure has to be defined using an
initial

 ! value

7.3.1 Advanced initialisation of variables

Variables and constants can be initialised with the results of expressions.

For example:

When initialising complex variables, it is now possible to use expressions to set values.

This can be done within arrays of records.

AusFarm Tutorial | 61

These are valid:

When initialising an array, each successive element will be assumed to follow the type of

the first element. For example:

Arrays can also be initialised using a constant multiplier:

Is the same as:

This syntax can be used for numeric and text arrays.

7.3.2 Using constants as array size specifiers

When defining the size off arrays it requires the integer value of the number of

elements. If an integer constant is declared in the script previously then this constant

can be used in the place of the literal integer.

define const integer padd_count = 10 ! Integer constant

define string paddock_names[padd_count] ! Use integer constant as array size

 Examples of complete statements

Here are some valid manager statements for a simulation with components called

paddock1, soilwater, subclover, ryegrass, and merinos:

62 | AusFarm training manual

define x = 100; y; z ! y & z are initialised at zero

define text nextpadd

define some_sw = [0.10,0.12,0.15,0.22, ! Array of real numbers, split over two lines

 0.30,0.30,0.30,0.34]

from start repeat 1 months ! Another rule would set "nextpadd"

{ merinos.move nextpadd }

on 1 apr 1980 ! Use a defined variable to trigger an event

{

 set z = subclover.green_dm + ryegrass.green_dm

 if z > 700

 {

 merinos.buy sex='wethers', number=10*paddock1.area, age=18.0, weight=50.0

 merinos.move group=merinos.nogroups, paddock='paddock1'

 }

}

each 15 dec ! Shear all sheep at least a year old

 for i = 1 to merinos.no_groups

 if merinos.age_months[i] > 12

 merinos.shear group=i

paddock1.soilwater.irrigate amount=pet - rain ! Daily irrigation

A more complete set of examples can be found in the AusFarm User Notes documents.

 Management Events Summary

Stock component

buy Buy animals into the simulation

sell Sell animals out of the simulation

shear Shear (sheep only)

join Commence mating

castrate Castrated unweaned male lambs or calves

wean Wean some or all unweaned lambs or calves

dryoff End lactation in cattle

move Assign a group of animals to a paddock

split Divide a group of animals into two groups

tag Assign a “tag value” to a group of animals

Sort Sort the list of groups of animals by tag value

Supplement component

AusFarm Tutorial | 63

buy Purchase supplement

feed Place supplement in a paddock

reset Removes all residual supplement from a paddock

Soil Water component

irrigate Add irrigation water to the soil

Pasture component

sow Sow seed of the pasture species

spraytop Crude analogue to spraying this species with glyphosate

kill Kill herbage of this species only

cultivate Incorporates herbage and seeds into the soil

conserve Removes herbage and (optionally) stores it in a Supplement module

Cashbook component

earn Acquire cash

spend Spend cash

report Write a gross margin report

64 | AusFarm training manual

8. Writing management scripts

A management script is made up of a collection of statements. Most statements define

rules. At each time step, each rule statement in the script is evaluated to determine

whether any management events should be issued to the rest of the simulation for

processing.

The order in which the statements forming a management script are evaluated is not

defined. To ensure that rules are evaluated in an order, control rules must be used (see

below).

Comments may be placed in a management script, preceded by ! . Multi-line comments

or comments in midline can be enclosed using /* */ as in the C and C# languages.

The script editor colour-codes various elements of a script to assist the user in

identifying them. Keywords are shown in dark blue; numeric values and dates in blue;

text values in magenta; event parameters in green and comments in red.

 Using the script editor

8.1.1 Code completion

When typing management script and the name of one of the components is followed by

a period, by waiting for around one second a window will popup showing a list of

properties and events that belong to this component. In the example below you can see

a list of the events that can be triggered in the stock component. Highlight the preferred

event in the list using the up or down arrow keys on the keyboard or use the mouse

cursor to select it. By then pressing enter on the keyboard it will be inserted into the

Manager script.

AusFarm Tutorial | 65

8.1.2 Matching braces

To assist with formatting the Manager script correctly the editor shows clearly the

matching braces in the script. When the cursor is placed on a [, {, or (type of braces the

corresponding one is also highlighted. As shown in the figure below.

8.1.3 Checking the script

After writing a section of Manager script it is useful to check that it is written in a well-

formed manner. At the bottom of the Manager Script tab is a Test parsing button that

can be used to start a syntax check of the script. This option will run some initial tests

and alert you to any obvious problems before doing a run of the simulation. This option

is highlighted in the figure above.

8.1.4 Bookmarks

To set bookmarks in the script there is a keyboard combination that performs this task.

To set a bookmark use the key combination, CTRL + Shift + 1. When a bookmark is set

you will see a small number icon in the left-hand gutter of the editor. To unset the

bookmark, ensure the cursor is on the line of the bookmark and use the same key

combination. You can have up to nine numbered bookmarks on each Manager editor.

Just use the CTRL + Shift + number combination for any extra bookmark.

Once a bookmark has been set in a script, it is easy to go to that line at any time using

the key combination CTRL + number.

66 | AusFarm training manual

Bookmarks are shown in the following figure.

8.1.5 Reformatting Management Scripts

Manager scripts can often get untidy and loss

of indentation can make them difficult to

read. An option to reformat the script based

on some rules is available when you right

click on the script editor. When the script is

reformatted, the curly braces will appear on

their own lines. Indentation will be adjusted

with indents of three characters per indent.

Comments will not be adjusted unless they

are on the end of a line.

A selected section of script can also be

reformatted.

8.1.6 Inspecting the Management script

While the simulation is running it is possible to log many of the functions performed by

the Manager. By ticking the two check boxes at the bottom of the Manager Script tab

and providing a filename for the log, a list of management details will be saved to file.

This is extremely useful for checking that the management of the simulation is working

as expected.

Below is an example of the log file that is generated. It is a tab seperated text file. The

leftmost value is the line number from the script followed by the date of the timestep

AusFarm Tutorial | 67

that it was executed. The statement is then shown with the current values for any

variable and parameters used on that line.

 15 01-Jan-1970 set g = 1

 16 01-Jan-1970 set no_to_buy = 500.0

 17 01-Jan-1970 stock.buy genotype= small merino number= 500.0 sex= wethers

 age= 12.0 weight= 45.0

 18 01-Jan-1970 stock.tag group= 1 value= 2

 19 01-Jan-1970 stock.move group= 1 paddock= paddock1

 26 15-Dec-1970 stock.shear

 31 20-Dec-1970 set group_count = 1

 33 20-Dec-1970 stock.split group= 1 type= age value= 1825.0

 13 01-Jan-1971 stock.sell group= 1 number= 121.5

 15 01-Jan-1971 set g = 2

 16 01-Jan-1971 set no_to_buy = 136.0

 17 01-Jan-1971 stock.buy genotype= small merino number= 136.0 sex= wethers

 age= 12.0 weight= 45.0

 18 01-Jan-1971 stock.tag group= 2 value= 3

 19 01-Jan-1971 stock.move group= 2 paddock= paddock1

 26 15-Dec-1971 stock.shear

 31 20-Dec-1971 set group_count = 2

 33 20-Dec-1971 stock.split group= 1 type= age value= 1825.0

 33 20-Dec-1971 stock.split group= 2 type= age value= 1825.0

 13 01-Jan-1972 stock.sell group= 1 number= 90.25

 13 01-Jan-1972 stock.sell group= 2 number= 33.25

 15 01-Jan-1972 set g = 3

 16 01-Jan-1972 set no_to_buy = 129.0

 17 01-Jan-1972 stock.buy genotype= small merino number= 129.0 sex= wethers

 age= 12.0 weight= 45.0

 18 01-Jan-1972 stock.tag group= 3 value= 4

 19 01-Jan-1972 stock.move group= 3 paddock= paddock1

 45 19-Aug-1972 supplement.feed supplement= wheat amount= 198.0 paddock=

 paddock1

68 | AusFarm training manual

9. Introduction to Livestock Management and
the Stock component

Livestock are supported in AusFarm using a Stock component. Here are some of the
features of the AusFarm Stock component.

• One Stock component contains all the animal groups in the simulation. The
component manages the lifecycle of the animal cohorts that can be located on
various paddocks in the simulation.

• Each animal group has its own status at any point in the simulation.

• The animal groups can be located on any number of paddocks in the simulation.
They can be moved when required to do so.

• An animal group may include a range of ages.

For a more complete summary of livestock management in AusFarm see the AusFarm
User Notes #2 document.

 Stock component

Usually a single STOCK module is added to an AusFarm simulation at the top level in the

module hierarchy.

In a grazing system there may be a variety of different classes of livestock. Animals may

be of different genotypes (including both sheep and cattle); may be males, females or

castrates; are likely to have a range of different ages; and females may be pregnant

and/or lactating. The set of classes of livestock can change over time as animals enter or

leave the system, are mated, give birth or are weaned. Further, animals that are

otherwise similar may be placed in different paddocks, where their growth rates may

differ.

Below is a representation of some animal groups managed by a Stock component.

AusFarm Tutorial | 69

Above: The list of animal groups at a point in time during a hypothetical simulation

containing a Stock module. Group 1 is distinct from the others because it has a different

genotype and sex. Groups 2 and 3 are distinct because they are in different age classes

(yearling vs mature). Groups 2 and 4 are distinct because they are in different

reproductive states (pregnant vs lactating). Note how the unweaned lambs are

associated with their mothers.

Index

• Each animal group is assigned a unique index

• The index for a group of animals can change – using the split event

Tag value

• Use the tag event to assign a value

• Used to manage distinct groups of animals together

• Assists in collecting summary information

Priority score

• Used to control the movement of animals when using the draft event

Typical Livestock management operations

Policy Enterprise Type

Stocking rate and replacement All stock enterprises

Shearing Sheep

Reproductive management Cowes and sheep

Sales of young stock Coves and sheep

Culling old stock All stock enterprises

Supplementary feeding All stock enterprises

Grazing management Multi-paddock systems

70 | AusFarm training manual

10. Simulation Analyses

When the objective of a simulation study requires that many related runs be executed,

and a “base case” simulation has been configured and tested, then the analysis facility in

AusFarm is useful.

The central idea is that one or more of the modules in an AusFarm simulation can be

defined to be factors. Each factor module has one or more sets of initialization data

(known as factor levels, on analogy with field experiments). When a simulation is run as

an analysis, every possible combination of factor level is used to automatically construct

and execute a simulation.

The user can also specify one or more report templates. Each report template describes

a set of charts and tables that compare the results of the simulations in an analysis.

When the analysis has been run, AusFarm uses the simulation results to generate an

HTML document containing these charts and tables.

Note: For modules that are systems, it is possible to define the entire system as the
factor. For example, a paddock module is a system.

 Setting up analyses

For example, to test the effect of systematically changing the characteristics of the

Paddock module in a single-paddock system, open the example simulation in

example.afs.

AusFarm Tutorial | 71

 Right-click on the Paddock
module in the configuration
tree and select the Add System
Factor option from the pop-up
menu.

Factor levels contain initialization data. This data can be modified by using the initialization
dialogs or via data entry interface in the Initialise tab, just as for modules in the configuration
tree.

 Change the name of the new factor to Mid fertility and check that the fertility property

of the pasture module has a value of 0.75 as shown.

 To add an extra factor levels, either select the Add System Factor option again or right-
click on one of the factor levels and select Clone from the pop-up menu.

Once a simulation contains one or more factor modules, the Run Analysis button appears in
the top pane of the Simulation window. Clicking the Run button executes the base simulation,

72 | AusFarm training manual

while clicking the Run Analysis button will set up and execute one simulation for each
combination of factor levels:

 Click on the simulation node

(Example) in the model tree and you

will be able to see the complete

structure of the Analysis.

 Run the analysis.

If the Report has been selected for output, then the report will be displayed at the
completion on the run.

 Close the report if it is open then open the Results
window.

The tree of results now has an extra level; within the
simulation, there is a sub-tree for each of the simulation
runs that was run in the Analysis, and within each run the
same set of output variables (with different values) is
displayed for selection.

 Select the simulation node (Example) at the root of the model configuration tree.

The Analysis tab will appear, showing the structure of the entire analysis (i.e. all

factors and their levels).

AusFarm Tutorial | 73

 Double-click on the existing Report object. The Report Designer dialog will appear.

(See the Help file for details on how to set up charts and tables in reports).

 Right-click on the Analysis item in the Analysis tab. From here you can add another

report item to the Analysis if required.

 Using Generic modules as factors

Often, the factor in a simulation analysis is used control a management activity and is

therefore expressed in a management script. In these cases, it can be inefficient to make

the Manager module into a factor, especially if more than one factor in the simulation

experiment is implemented via management rules. In these cases, an elegant solution is

as follows:

1. Add a Generic module to the simulation’s configuration;

2. Define a variable within the Generic module and provide an initial value for it;

3. Use this variable in the Manager script, either directly in events (e.g. a stocking rate)
or in a conditional statement or statements that turn rules “on” or “off”;

4. Convert the Generic module into a factor in the analysis.

When using a Generic module for this purpose, it is important to refer to the factor

variable with an unqualified name in the manager script, e.g. stock_rate instead of

sr_factor.stock_rate.

Another way to use the Generic component

is as a system component. It is easy then to

use this system structure as a factor value in

an Analysis. In the example below the

Manager script can be dependent on the

location.

74 | AusFarm training manual

Configuring an Analysis using Generic components

As an example of how to test more than one stocking rate.

 Modify a Management script to use a variable sourced from another component.

The variable used here is SR. Choose any name that applies to the quantity you

are defining. This variable is then added to the Generic module state variables in

the next step.

 Add a Generic component to the simulation, name it StockingRate and add a

state variable to it.

It is now possible to replicate this component in an Analysis and give it differing values.

 Right click on the

StockingRate generic

component and choose

Add Factor. Do this again.

 Edit the names of the

components in the

Analysis to reflect the

internal values.

AusFarm Tutorial | 75

 Edit one of the factor

values. This factor value

is 20 animals per hectare.

After running the Analysis the report will show the effects of increasing the stocking rate.

76 | AusFarm training manual

11. Configuring Reports

Reports are an advanced feature that can take some effort to master. When a well

configured report is used with a simulation it can add significant value to the process.

Reports can show the results from an individual simulation as well as an Analysis of

almost any dimension.

In AusFarm to generate a report requires the configuration of a report template. The

template is a set of instructions that determine the layout, the variables to use and how

to aggregate them. Reports can contain charts, tables, headings, text sections and grid

layouts of these items. To design a report by creating a template AusFarm includes an

editing window as shown below.

Report Designer dialog

Report sections

Chart Compact view of many points. Line, bar, area.
Table High precision view with data in column and row format.
Text Detailed description that can include HTML markup script.
Summary Table Compact comparison of treatments in table form.
Loop Groups of treatment results that organises treatment

comparison

AusFarm Tutorial | 77

When designing a report, it can be efficient to copy existing sections and adapt them.

Sections can be copied from within a report design or from another one. You will need

to make some decisions such as:

• Decide which variables convey the information you need
• Choose the most appropriate transformation of the time course of the variables
• Choose an aggregation interval and statistics
• Format the values: chart type, series colours, decimal places and units

 Report Variables

An AusFarm simulation can contain several reports. You can edit each one

independently, adding as many sections such as tables, charts, and grid layouts as you

require. See the Help file for more details.

In the bottom table of the Report Designer is a list of the variables that will be used in

the selected report section. Use the Select, Remove, and Clear buttons to manipulate

the list of variables in each report section. You can order the variables using the red up

and down arrows

Calculated expressions

By using the button you can add a calculated expression as a column in your table or

chart.

In the name column for a calculated expression, enter a mathematical expression. It may

include the names of other columns. In this case: income_ha - expense_ha. You can

choose whether you want to display the source columns.

Note: You cannot do any aggregation on the calculated column.

78 | AusFarm training manual

12. Using Repositories

Repositories are used to store module data and management scripts that are used

regularly in simulations.

Items of a similar type can be grouped into folders within a repository. Repository items

are associated with a component. Items associated with the Manager component are

treated somewhat differently to other items.

Examples of items that may be stored in a repository are:

1. Commonly used sets of management rules
2. An archive of project work for later use
3. A "library" of commonly used soil descriptions.

 Getting module data from a repository

 Close the Results window.

 Open the Repository clicking the library button on the main toolbar.

A Repository window like this will open on the bottom of the main window:

The Repository is divided into two sections. The Custom section is for the user to add to

or delete from while the Standard section contains items that cannot be changed.

Items from the Repository can be dragged into simulations using the mouse.

When you need to add items to the Repository, items can be dragged from simulations

and dropped into folders.

Before you exit AusFarm you will be asked if you want to save any changes you have

made to the Repository.

 To save changes or add folders, just right click the mouse on an item in the Custom

section.

AusFarm Tutorial | 79

You can also have other custom Repository files. If you right click on the Custom library,

you can open another file. If you want to create another custom library file, choose the

Open file... option and type in a new name in the Open file dialog. You will then be

asked if you want to create a new file.

Items from the Standard library section can be copied into the Custom section by just

dragging with the mouse.

 Copying module data to a repository

 Drag the icon for the Weather module onto a folder in the repository. A new

repository item will appear.

 Select the Weather repository item. The initial values for the module will appear in

the right-hand pane of the repository. These values can be edited in the same way as

in the Initialise tab of a simulation window.

 Copying module data from simulation to simulation

Add a second, identical paddock to the simulation:
 Right-click on paddock1 in the Models tab.
 Select the Copy option from the pop-up menu that appears.
 Right-click on the simulation icon in the Models tab.
 Select the Paste option from the pop-up menu that appears. A copy of the paddock

system will appear.
 Rename the new paddock as paddock2.

The same process can be followed to copy module data between two different
simulation windows. Modules may also be dragged and dropped rather than copied
and pasted.

80 | AusFarm training manual

13. Using APSoil soil data

It is possible to copy the soil descriptions from APSoil directly into AusFarm. This is done

firstly by copying the soil chosen in APSoil to the clipboard. Then with a paddock

component in the model tree in AusFarm; right click on the paddock and choose Paste

APSOIL.

Once the soil is pasted on the paddock, new components will be added to the paddock

system. The nitrogen model then needs to be initialised for initial nitrogen values. The

soiln initial values are shown below.

AusFarm Tutorial | 81

The initial values for the cropping modules will need to be set manually as shown below.

82 | AusFarm training manual

As Australia’s national science agency and
innovation catalyst, CSIRO is solving the
greatest challenges through innovative
science and technology.

CSIRO. Unlocking a better future for everyone.

Contact us

1300 363 400
+61 3 9545 2176
csiroenquiries@csiro.au
www.csiro.au

For further information

CSIRO Agriculture and Food
Neville Herrmann
+61 2 6246 5290
neville.herrmann@csiro.au
https://www.csiro.au/en/Research/AF

For further information

CSIRO
Andrew Moore
+61 2 6246 5298
andrew.moore@csiro.au

https://www.csiro.au/en/Research/AF

