Australia’s National
Science Agency

AusFarm Tutorial

CSIRO Agriculture and Food

Workshop training manual

Version 2.0

Feb 2020

AusFarm Tutorial | 1

Enquiries should be addressed to:

Neville Herrmann

CSIRO Agriculture & Food
GPO Box 1700

Canberra ACT 2601
grazplan@csiro.au

Copyright and Disclaimer

© 2020 CSIRO, To the extent permitted by law, all rights are reserved and no part of this
publication covered by copyright may be reproduced or copied in any form or by any
means except with the written permission of CSIRO.

Important Disclaimer

CSIRO advises that the information contained in this publication comprises general
statements based on scientific research. The reader is advised and needs to be aware
that such information may be incomplete or unable to be used in any specific situation.
No reliance or actions must therefore be made on that information without seeking
prior expert professional, scientific and technical advice. To the extent permitted by law,
CSIRO (including its employees and consultants) excludes all liability to any person for
any consequences, including but not limited to all losses, damages, costs, expenses and
any other compensation, arising directly or indirectly from using this publication (in part
or in whole) and any information or material contained in it.

2 | AusFarm training manual

Contents

1. INEFOTUCTION .. s s 5
11 AUSFAIM it 5
2. USING AUSFAIN L. sessbssesnssnnne 7
2.1 The SiImulation ProCessccceeiiiieiiiieiiiieiiee et 8
3. Components, Modules and SYStEMSceiveiiiiiiiiiiieeeriee e 10
31 COMPONENTS ..ttt bebebessesessnbssnnnnes 10
3.2 MOAUIS ... 10
3.3) 1K= 1 T PP UPUPPP PR 11
4, GettiNg STArted ..oveeeee e 12
4.1 INStAlliNG AUSFAIM ceeiiiiiiiiecieeee e s 12
4.2 RUNNING AUSFArmM ...oooiiiiiiii e 12
43 The Main WiNAOWcc..eeiiiiiiiiiiiiieeiteeee ettt 13
4.4 A Tour of the Simulation WindOWccccceeviiiiniiiiiiieiiecee e 13
4.5 6] o] oL=T gl o= 1= PP PPPPPPPUPPPPR 14
4.6 Left-Nand Paneoeviiiiiee e e 15
4.7 Right-hand Panecooouiiiiir e 15
4.8 RUNNING @ SIMUIAtION......ciiiiiiii e 17
4.9 The ResUltsS WINAOWc.coriiiiiiiiiiieneeeeeee e 19
410 Generating @ Chart. ..o 19
411 Generating @atable ... 21
4.12 Datatreatmentsccccceiiiiiiiiiiiii 22
5. Configuring a new simulation ... 25
51 Configuring and Initialising Modules...........cccovviieiiniiiee e, 25
5.2 The Notes and LOEEING 1absccovvuiiiiiiiiiieice e 28
53 Sequencing the simulationccveeeeiieiiecicie e 29
5.4 Selecting and Storing QULPULS.....vvvieieeiieiiireeeeee et 31
5.5 Comparing initial values of components.......cccccceeeveecvnvreeeeeeeeeeeecnnnee, 36
6. SPECITYING MaANAZEMENTuvtivieieee ettt e e e e eeerrr e e e e e e e e e eananees 39

AusFarm Tutorial | 3

6.1 YT a1 o1 =TT 39

6.2 EVENTS oo 41
6.3 Discovering the Variables and Events for Modulescccccceeeeennne. 43
7. Contents of Manager SCIIPLS ...viiiiiiiei ettt 46
7.1 TIME SPECIHTIEIS ctiiie it e e 46
7.2 RUIES et s s 47
7.3 Definition StatemMents........cooviiiiiiieeeeeeee e 59
7.4 Examples of complete statements.......ccoceeevciiiiniieiniee e 61
7.5 Management Events SUMMArycc.eeeieieiiiiiiiiceeeee et 62
8. Writing ManagemMeENt SCrIPTS ..uuuuuuuuuirieriririiiieiuirrereriierrrerrrererr—————————— 64
8.1 Using the script @ditor......oovuveii i 64
0. Introduction to Livestock Management and the Stock component 68
9.1 StOCK COMPONENT.....iiiiiiiiiiee e e 68
10. SIMUIAtION ANAIYSES..oceiiii e e 70
10.1 Setting UP analySeS..couuiiiiiiiiieeieitee ettt 70
10.2 Using Generic modules as factorscocccvvcieiviieiniieinee e, 73
11. ConfiBUIING REPOIES . e e e e e arre e e e e e 76
11.1 RepOrt Variables ...ttt 77
12. UL T =g (=] oo 1] o] o 1= 78
12.1 Getting module data from a repositoryccccvvveeeeeeeeeicciiirieeeeeee e 78
12.2 Copying module data to @ reposSitory.....cccccvviieeieiiiieeeeniieee e 79
12.3 Copying module data from simulation to simulationc............ 79
13. Using APSOIil SOIl data.....ceeeeiiiiciieeeec e 80

4 | AusFarm training manual

1. Introduction

1.1 AusFarm

AusFarm is a software tool that allows problems to be analysed with simulation models
of physical and biological systems. AusFarm is highly generic, but it has been built
primarily to assist decision-making in agricultural enterprises at scales ranging from
paddocks to whole landscapes.

With the complexity of farming systems having multiple enterprises increasing there is
an opportunity for modelling tools to represent them and provide insights into how
these systems can be adapted to improve efficiency and reduce environmental impact.
AusFarm can model cropping systems and can also model grazing systems interacting
with cropping enterprises.

Simulations in AusFarm have the following features:

Modularity Instead of a single program that contains the entire "AusFarm
model", simulations in AusFarm are built up from smaller
elements known as components that describe parts of a
biophysical system.

For example, the standard AusFarm distribution includes one
component that handles weather data, and another that
describes the dynamics of grazing ruminants.

Separating the parts of a model that are closely related into
sub-models has advantages during model development, for
software maintenance, and in the deployment of up-to-date
versions of models. It also means that models from groups
other than CSIRO Plant Industry can be used within AusFarm.

Configurability Once a simulation model is decomposed into components, it
becomes natural to arrange the sub-models in configurations
that reflect a range of different real-world situations.

The practical advantages are that an AusFarm user can put
together the simplest model required to analyse a given
problem and can use multiple copies of a model component
within a simulation (for example to represent the flows of soil
water in each of several paddocks).

Interchangeability Modular construction also permits substitution of one
representation of a process by another, depending on the

AusFarm Tutorial | 5

Representation of
both continuous
and discrete
processes

Hierarchical
structure

Advanced reporting
features

needs of the user. This can be useful in comparing different
representations of a process, or in configuring a simulation for
efficient execution.

Many processes in agricultural systems are fundamentally
continuous in nature. Others, particularly management
interventions, involve sharp changes in the state of the system,
which may be thought of as instantaneous events. AusFarm
can accommodate both continuous and discontinuous
processes. Farm system management tasks can be customised
using a Manager component which allows the use of detailed
scripts containing rules to drive much of the behaviour of the
simulation.

Ecological and hence agronomic systems contain too many
entities to be solved analytically by differential-equation
techniques, and they have too few entities to be treated as
statistical assemblages. Current ecological theory suggests that
the best way to analyse this kind of complexity is to take
advantage of the hierarchical organization in these systems
that arises from differences in the rates of different processes.
Simulations in AusFarm can be configured to capture such
hierarchical structure.

AusFarm allows the output of results in several formats
including text and databases. Built into AusFarm is a reporting
system that has flexibility to accommodate many variations in
simulation structure and allows easy comparison of treatments
in a multidimensional simulation experiment called an Analysis.

AusFarm has been developed by CSIRO Agriculture and Food. The standard distribution

includes a set of models, also developed by CSIRO Agriculture and Food, that enable
simulations of grazing enterprises located in temperate southern Australia.

6 | AusFarm training manual

2. Using AusFarm

Typically, use of AusFarm will follow these steps:

Determine what question AusFarm is to answer, and therefore what information
a simulation (or simulations) with AusFarm needs to generate. This is the most
important step in the process.

Construct a simulation that represents the biophysical and management system
under consideration.

(a) Create a simulation window or open an existing simulation file that is suited to the
guestion at hand.

(b) Configure the simulation to include representations of all the processes that are
important in understanding the biophysical problem.

(c) Specify the initial conditions of the simulation: the locality for which weather data
are to be used, the attributes of soils, plants and animals on the first day of the
simulation, costs and prices, etc.

(d) If necessary (almost always), describe the management of the biophysical system by
writing a management script.

(e) Select the outputs to be stored for later viewing.

Run the simulation.

Extract the results of the simulation as tables or charts and using these outputs
to help answer the question at hand. AusFarm contains powerful facilities for
summarizing simulation outputs. It may also be useful to export information
from AusFarm to another program such as a spreadsheet or statistics package for
further analysis.

Answering a question will often require several slightly different simulations. A set of

simulations in AusFarm can take the form of a structured “simulation experiment” in

which one or more inputs to the simulation are varied systematically. Such simulation

experiments can require large numbers of simulation runs. AusFarm incorporates a

feature called a Simulation Analysis where configuring similar simulations and reviewing

the results comparatively is simplified and has enormous flexibility.

Note: Beyond a certain level of complexity, it becomes almost inevitable that a

simulation will not work as intended the first time it is run. It is the user's responsibility

to store and examine outputs from the simulations to ensure that their structure, initial
values and management script are working as intended. Various logging options are
available to assist in this process.

AusFarm Tutorial | 7

2.1 The Simulation Process

The process for testing a model can follow the flow shown below. AusFarm is designed
to integrate all these steps within the application. This means that simulations can be
tested efficiently and opportunities for erroneous configuration are reduced.

Factors

Test for

Config uration|—> Initialisation Acceptability

-~

Configuration

e The system design is formulated. The model structure that includes the sub-
models is built in the model tree and the management strategy is coded in
Manager scripts.

Initialisation
e This involves setting initial values for the sub-models.
Test for Acceptability

e Executing the time-steps for the simulation and examining the results from a test
run. This is a critical phase that should be undertaken carefully. When further
refinement is necessary the Initialisation step is undertaken again. The
acceptability step is often the main task with the remaining steps being optional.

Factors

e Choosing sub-model initial values that can be adjusted between simulation runs.
This will determine the number of treatments that will be processed in the
Analysis. Factors in AusFarm are represented by one of the sub-models or they
can be a system of sub-models.

Reports

e Designing a report that can include several charts, tables, or text. The report will
give some insight into the effects of varying the values of the factors chosen
previously.

8 | AusFarm training manual

Analysis

e This is the task of testing each simulation treatment. The multi-dimensional
experiment is processed, and results are stored for presentation using the
previously designed report template.

Results

e The simulation results are formatted using the report design and shown in a
HTML document.

AusFarm Tutorial | 9

3. Components, Modules and Systems

3.1 Components

In AusFarm, model logic is contained within entities called components. Each component
corresponds to a sub-model, i.e. a set of variables, equations and events that are inter-
related. For example, the standard distribution of AusFarm contains a Soil Water
component that contains the logic for a soil water budget, and a Stock component that
contains the GRAZPLAN ruminant biology model.

Some components can be thought of as "utilities" - they perform tasks that are not part
of the model in a narrow sense (i.e. as a mathematical entity) but are vital to making the
model useful. An example of a utility is the Output component, which allows the user to
store the results of simulations for later interpretation.

Each component is implemented as a Windows dynamic link library (DLL). Before a
component can be used in a simulation, it must be installed on the component palette.

n::smu]
e e e B - EW

3.2 Modules

A module is a specific instance of a component within a bodels

specific simulation. A simulation may contain several modules | w g% Example

that are instances of the same component. For example,in | ™~) EAEEET

the simulation structure at right, there are two modules that M g[:;'ﬂf

are instances of the Soil Water component, and six thatare | - b’ weather

instances of the Pasture component. B "ﬁgddﬂﬁm
-l water

A module can only exist as part of a simulation. The set of %1% pasture

modules in a simulation is defined by adding them to the Y '%_Eddm;kz

simulation tree in the Models tab of the simulation window. S E:SE:,E

This process is known as configuring the simulation. v g3 Feedlot
-ﬂ water
44 pasture

AP stock
From the point of view of an AusFarm user, each moduleis | . ® supplement
made up of the following elements:
Name A module's name is supplied by the user via the Models tab. It is used

to refer to the module and its variables or events, for example when
writing the management script. Each module has a short name

10 | AusFarm training manual

Initialisation
Variables

Driving Variables

Output Variables

Sequenced Events

Management

Events

3.3 Systems

(e.g. "pasture") and a fully-qualified name that is defined by the
systems to which it belongs (e.g. "paddock2.pasture "). The short name
need not be unique, but the fully qualified name must be unique.

contain the values that must be known to set up a module.

contain values that are not part of the module but must be known to
calculate its equations.

contain values that can be stored for later viewing and analysis, and/or
used in management scripts to control the course of the simulation.
(Initialisation variables are usually also available as output variables).

contain the rate equations of the module, i.e. the main model logic.
Each sequenced event is computed once per time step. AusFarm
handles the setting up of sequenced events automatically.

can be invoked as part of management scripts to change the module's
state in some way.

The modules in each simulation are arranged, not in a simple list, but in a tree. Each sub-
tree of this structure is known as a system, and the module at the "root" of a sub-tree is
called a system module. The simulation structure above has three systems: the system
made up of Paddockl and its child modules, the system made up of Paddock2 and its
child modules, and the entire simulation. Only certain components can act as system
modules. In the default AusFarm distribution, only the Paddock component can be used

to form systems.

AusFarm Tutorial | 11

4. Getting Started

The software tutorial section of this manual begins here. Follow the steps along with the
installed software to become familiar with how the user interface works. The ® symbol
is used to instruct you to follow the steps on your computer with the AusFarm software.

4.1 Installing AusFarm
AusFarm is currently a Microsoft® Windows 32-bit native code program that can be
installed and run on 32-bit and 64-bit versions of Windows.

® Start by installing the AusFarm software. Run the setupaf.exe program and
follow the prompts. Some sample weather data will be installed that will allow
the running of an example simulation.

4.2 Running AusFarm

® Run the AusFarm program. The main window will appear:

File Meodel Simulation Toels Window Help

NAREDS Csifo |
SeRe e B AEK

The main window has a menu and toolbar at the top and a client area where other
windows for simulations, results selection and reporting reside. At the right-hand side of
the toolbar is the Component Palette, which is used when configuring simulations.

12 | AusFarm training manual

4.3 The Main Window

The main window hosts simulation windows. You may have multiple simulations open at
once. Along the top of the main window is the main toolbar and the component palette.

The main toolbar is useful for quick access to common tasks.

e Create a new simulation

e Open an existing simulation
e Save the current simulation
e Open the outputs window

e Show or hide the Repository
e Open the preferences dialog

The component palette displays csiRD |
jche componepts that' can bg S S m T e m - E
incorporated into a simulation. L % b
They can be dragged from here il Sl
with the mouse onto a simulation Change icon
tree. Right clicking the mouse on a Help
component item on the palette © Remove
displays a menu with further ST '
options.
Info Reads the internal component description and displays property and event
information.
Sequence Allows changing of the default sequenced event ordering for this
component.
Change icon Allows changing of the default component icon
Help Opens the help file with the component specification for this component
Remove Removes the component from the palette. This does not delete the file
Move to Options for moving components onto other tabs

4.4 A Tour of the Simulation Window

Simulation windows are used to create and modify simulations. It is possible to have

several Simulation windows open in AusFarm at once.

® Choose the File | Reopen menu option and choose the Example.afs simulation.

AusFarm Tutorial | 13

CSIRO AusFarm - [\\wmware-host\Shared Felders\Documents\AusFarm'\Example.afs]

ﬂ File Model Simulation Tools Window Help - 8 %
1 = C5IR0
NAREEDS |
N Bw fom : hEE W
Type: Higtorical Start: [1.Jan 1970 =p | Alfter processing open
End: |31 Dec 1980 = | | Report v
Models Wariables Events Manager Seript | Motes Logging
v @ Example 1 define real stocking rate = 10.0 ! wethers/ha ~
- M manager 2 define real cfa_ years = 5.0
< output 3
& weather 4 ! Replacement
paddock s
ﬂ ster € define real no_to_buy
o 7 define real group count
3 defi int
L™ ol : efine integer g
10 each 1 Jan
11 {
12 for g = 1 to stock.no_groups
13 stock.sell group=g, nunber=0.25%*stock.number[g]
14
15 set g = stock.no_groups + 1
1€ set no_to_buy = stocking rate * paddockl.area - stock.number all
17 stock.buy genotype='3 1 Merino', number=no_to_buy, sex='wethers',6 age=12.0
18 stock.tag group=g, valus=g+l
1% stock.move group=g, paddock='paddockl'
20 } M
£ >
[JLog Managsr output to lagfils
[Lag Set events Dizplay logfile Test parzing

The management script is displayed for the example simulation.

Each Simulation window is divided into three main areas, or panes. The two middle
panes contain several tabs that become visible depending on the task that the user is
performing.

4.5 Upper pane

The upper pane is used to enter the date ranges over which the simulation is to be
executed. The preferred reporting option is also chosen here.

Type: | Histarical Start: |1 Jan 1970 = | After processing open
End: |31 Dec 1980 = | Report ~

Type Use this combo box to select the type of simulation run that is to be performed. In
this release of AusFarm, the only option in this combo box is "Historical".

Start Enter the start date for the simulation. Note that all initial values that are entered
apply on this date. Dates may be entered in "d mmm yyyy" format, or selected by
clicking on the calendar buttons and so opening a calendar dialog.

14 | AusFarm training manual

End Enter the end date for the simulation.

@The Run button commences the process of the simulation.

This button appears when the simulation is configured as an Analysis. It will
process the Analysis.

The Stop button appears while the simulation is executing. Use it to halt process.

D

4.6 Left-hand pane

This pane has three tabs:

Models | Variables Events Models tab is always visible. It is used to configure the
v @ Example structure of the simulation model.
""" M manager
----- I output
vg ;":;:;‘ZL1 Selecting a module in the Models tab will make
A water either the Initialise tab, the Outputs tab or the
894 pasture
e ;’(DC'E Management Script tab visible in the right-hand
""" " supplement pane, depending on the type of module
selected.

Variables becomes visible when the user is editing a
tab management script or a TextOut component. It
shows the names and structure of all variables

belonging to modules in the simulation.

Events tab becomes visible when the user is editing a
management script. It shows the names and
parameters of all events belonging to modules
in the simulation.

4.7 Right-hand pane

This pane has six tabs, some are visible only when specific components are selected in
the model tree:

AusFarm Tutorial | 15

file:///C:/Projects/CMP/farmwise/help/html/analysis.html

Initizlise Motes Logging Emors

Wariable Walue Type | r
-8bC paramn_file <none string
-80C species Fhalariz zlring
-80E rutrients <noner zlring
-18al Fertility 075 double
—[a] lapers array
—teal max_rtdep 700.0 double ™
- t€8l |agged_day t -933.9 double ol
- 1€8l phenology 3.05 double
183l flower_len 0.0 double d
el flruwer tirme nn Arushle d

Outputz Motes Logging Errors

Lok far: | | Clear [Show selected only
Simulation | Aggregation | Dec. ... | Aliaz
Bz output

E| M manager

o [t cla_years
[t g

=[teal group_count
>|:| real o to_buy

: |:| real stocking rate
Elgvﬂ-3 weather

Manager Script Maotes Logging Emors

define real stocking rate = 10.0 ! wethers/!

define real cfa years = 5.0

[VI SN I

jes

=] = memen b
Splacement

define real no to buy
define real group count
define integer g

[TR IS

each 1 Jan

{

2 for g = 1 to stock.no groups

13 stock.sell group=g, number=0.25*stock.nur
<

-
o)

J

[Log Manager output to logfile
[JLog Set events Diizplay logfile

16 | AusFarm training manual

Initialise tab

Becomes visible when the user selects a
module other than a Manager or
Output module in the Models tab. It
shows the initial values of variables
belonging to the selected module and
allows the user to change them.

Outputs tab

Becomes visible when the user selects
an Output module in the Models tab. It
is used to select the output variables
that will be stored as the simulation
executes which can then be examined
once execution is complete.

Notes tab

Is always visible. It allows the user to
annotate the Simulation window.

Management Script tab

Becomes visible when the user selects a
Manager module in the Models tab. It
is used to enter the management script
for that module.

Logging tab

Is always visible. Use the options in the
Logging tab to set up error and trace
logging for the simulation. When trace
file logging is turned on the tab will
include an icon as a visible warning.
When running multiple simulations
with management events, errors or
messages will be logged. These must be
saved to unique files.

Analysiz Motes Logging Emors

~ & High fertility
water
1% pasture
Law Fertility
ﬂ water

Legfe pasture

Wariable | Walue | Twpe
E-BH |apers are
--[X,‘f] harizans ars
--[Xp‘f] params afiz
i»---real evap_alpha 3.5 dout
feEl sl dbeds 017 dout
--[Xp‘f] s afiz
Gl shiow_pack 0.0 dout

4.8 Running a Simulation

Analysis tab

Becomes visible when the user selected
the Simulation module (i.e. the module
at the top of the model configuration
tree). It allows the user to modify the
factor levels in a simulation analysis
and to design one or more reports that
will be generated after the simulation
or analysis is executed.

The last step before running the simulation is to set the date range over which it is to be
run. If you wish you can lengthen the run period. Now check that the report option is

chosen as below:

|:> After processing open

E: | Repart ~
® This is an Analysis so use this run button to execute the simulation.
While the simulation is executing, an indicator appears on the upper pane of Q
its window showing the progress of the calculations.
141215976
The Run button on the upper pane of the simulation window will be replaced o
by the Stop button. Clicking the Stop button halts execution of the simulation.

After executing this simulation, the chosen report will be displayed.

AusFarm Tutorial | 17

e AusFarm: Example - Report EI@
| &l

14 Feb 2020 14:09 A
Example - Report
1/01/1970 - 31/12/1980
Long term weather

[High fertility]
Average monthly temperatures and rainfall over the simulation period (1 Jan - 31 Dec, 1970-1980]

80
25 70
0 60
50
=
Q2 15 40 3
10 30
5 20
10
V] 0
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Mov Dec
| [l weather.rain (sum) — weather.maxt (av.) — weather.mint (av.) |
Pasture Pasture
[High fertility] [Mid_fertility]
Historic pasture availability [1/01/1970 - 31/12/1980] Historic pasture availability [1/01/1970 - 31/12/1980]
10000 10000
8000 8000
] Jul
f':] 8000 f':] 6000
4000 4000
2000 2000
V] 0
1-1-1872 1-1-1876 1-1-1880 1-1-1872 1-1-1876 1-1-1880
I. paddock!.pasture.green_dm [l paddocki.pasture.dry_dm I. paddocki.pasture.green_dm [l paddock1.pasture.dry_dm|
(V]
< >

The AusFarm report window

The report is made up of multiple charts. If you single click your mouse on a chart an
advanced editor with appear. From this window you can manipulate the chart and even
drill down into the data that is used to generate the chart.

Edit Chart Properties

[J30 [JH.Grid []v. Grd ¥ Origin | AtZema Legend | Bottom w~

10000
8000
6000

kaha

4000
2000

o

1-1-1872 1-1-1876 1-1-1880

|. paddocki.pasture.green_dm [l paddocki.pasture.dry_dm

Ok Cancel

Changes that you make on this dialog will be copied back to the main report when you
click the OK button. The Edit... button opens an even more detailed window where you
can view the data, export the data or change detailed chart layouts.

18 | AusFarm training manual

4.9 The Results Window

The Simulation results option will open the Simulation Results window in the same way
that the main toolbar option does. From there you can choose which outputs you wish
to see.

The Simulation Results window in AusFarm is used to select results from simulations and
to format them for display in reports. It is a quicker way of displaying outputs in an
adhoc way where a complete report template is not needed.

®» Open the Simulation Results window by &> | Alter processing open

clicking the Results button (ﬁ) on the main B |Report hd

toolbar or choosing the Simulation Results Nathing
Simulation results
option from the drop-down list as shown here
Yalue defan

and then click the chart button .

@ Simulation Results E\@
Yariables available for report Wariables selected far repart Clear all
E"a Example Sirnulatian Y ariable Aggregation colour
Ea High fertility teal Example-High fertility paddock1.pasture.green_dm Average [| *
Ekﬁ output real Example-High fertility paddock.pasture.dry_dm Average [|
5»:3 weather *
E@ paddock1
E;{_’ pasture
: real green_dm
: real dry_dm Style | Stacked bar ~ Chooze custom series colours
- lﬁ' stock Shaow all zeres on one chart
EI--@- Lo Feertiliby
Ekﬁ autput
G weather Lang term average | fram |1 Jan | to |31 Dec |
"@ paddock1
G-k stock
Time interval Days e

Table 5 Chart Help

All variables available for reporting from all completed simulations are shown in the
tree at the left of the Results window. To see the output files, modules and variables
below a node in the tree, click on the expand button by the node's name. To hide
them, click on the collapse button.

4.10 Generating a chart
B Select the cover_green and cover_tot variables by clicking the check boxes next
to their names in the tree.

® Change the data treatment to “Long term average” and set the date range to be
1Jan to 31 Dec.

B Change the time interval to 3 days

AusFarm Tutorial | 19

® Check the Choose custom series colours box.

® For each selected variable, click on the Colour column and select a colour for the
variable’s data.

® Click on the Style combo box and examine the options. Set the chart style as
Stacked bar.

® Click the Chart button. A Report window will be generated containing a chart
something like this:

13 Feb 2020 14:55
AusFarm Report

Example High fertility
Long term average [I Jan - 21 Dec, 1970 - 1980]

5000
4000
3000

kaha

2000
1000

]
01402 01i04 0108 01/08 0o 0z

B Average|Example High fertility:paddock.pasture.green_dm) (av.)
B Average|Example High fertility:paddock.pasture.dry_dm) (av.)

Click on the chart. The Edit Chart Properties dialog will appear:

5%‘_} Edit Chart Properties

[J30 [(JH.Gid [J¥. Grid ¥ Ongin | At Zema ~ Legend | Eottom w
5000
4000
m
f? 3000
2000
1000
0
01/02 01/04 01/08 01/08 01110 01M2
B Average(Example High fertility:paddock?.pasture.green_dm) (av.)
B Average(Example High fertility:paddock?.pasture.dry_dm) (av.)
ak Cahicel

If you resize this window or change any chart formatting and then click OK, the changes
will be displayed on the report page. Click on the Edit... button and explore the options
for formatting the chart.

20 | AusFarm training manual

4.11 Generating a table

B Return to the Results window.
® Click on the Clear all button to clear any selected variables.

® Add the maxt and rain variables to the selected list. Set the aggregation of the
rain variable to “Sum” and the aggregation of maxt to “Maximum”.

® Choose the Data over period option.

® Click the Table button. A Report window containing annual total rainfalls and
yearly maximum temperatures will be generated:

@ Simulation Results E\@
Yariables available for report Wariables selected far repart Clear all
E"a Example Sirulatian W ariable Agareqation
E--a High fertility teal Ewample-High fertiity weather mast b E=irLrn *
E-45 output teal Ewample-High fertiity weatherrain Sur
E- weather v

[o]redl rain
"@ paddock1 Style Line ~ [Choose custom series colours
- lﬁ' stock [] 5haw all zefies on one chart
EI--@- Lo Feertiliby
Ekﬁ autput
-5 weather Data for period ~ |19?D | to |1980 |

--@ paddock1 o oo

. Table | B Chat Help

13 Feb 2020 15:00

AusFarm Report

Example High fertility
Data for period 1/01/1970 to 31/12/1980]

Date Maximum Sum
weather.maxt (max) weather.rain (sum)

oC mm
1970 36.40 722.40
1971 37.70 616.00
1972 38.70 396.10
1973 40.20 755.00
1974 32.60 a77.00
1975 35.40 771.00
1976 34.60 292.80
1977 37.40 513.00
1978 36.40 771.00
1979 38.70 408.60
1980 37.00 460.40

Output display in AusFarm comes in two kinds: tables and charts. The process for
generating these in reports follows the same general set of steps:

AusFarm Tutorial | 21

® Select the variables that are to be presented in the report.
B Specify the data treatment that is to be applied to all variables.

® Specify the aggregation to be used for each variable within each time interval. This
step is only required if a time interval greater than one day is used.

® Click the Chart or Table button to generate a Report window.

4.12 Data treatments

The values of variables that are output from an AusFarm simulation can be treated in a
variety of ways. In the Results window, the following data treatments may be selected
when producing charts or tables:

Simple Simple “ | from 1Jan 1970 ka 31 Dec 1580

A simple presentation just presents the values of the selected output over
time.

Long Term Long term average | from to

Average
For each day of year, an average value of the variables is computed over all
the years in the course of the simulation. In a chart, therefore, the X-axis
shows days (or months) of the year, e.g. 1 Jan, 2 Jan etc; the Y-axis gives the
values of the output.

Average BWEIADE OVEN Vear: |'|9?|:| | to |1'-E"3':I |

over years
T o o

As for the Long Term Average treatment, but the average values are
computed over the selected range of years from the simulation.

Percentiles

Percentiles v |1n 25 B0 a0

fom [1Jan_[[g81 10

The user nominates up to five percentile levels for display.

4

4

4

4

-

For each day of year in the nominated range, the output values for all the
years in the simulation are ranked. The value corresponding to each
percentile level is then computed. The values for each percentile level over
time are presented as the output series.

22 | AusFarm training manual

Data for
period

Data over
period

P.D.F. for
period

A point (x,y) on the zt" percentile graph should be read as follows:

On day-of-year x a value less than or equal to y will be encountered in 2% of
years.

The X-axis of a percentile chart shows days (or months) of the year, e.g. 1
Jan, 2 Jan etc; the Y-axis gives the values of the output.

[ata far perind w [{u]
fom to

For this treatment, the user nominates a range of days of the year and also
a range of years.

For each year in the range, an aggregated value is computed over the range
of days and these summary values are presented.

The X-axis for a Data for period graph is the year, e.g. 1978, 1979 etc; the Y-
axis gives the variable values.

To view values for a single day of year, select a time interval of one day in
constructing this range, e.g. 15 Apr to 15 Apr.

[rata over period e

Irnm ta

As for Data for period, but summarized over all years in the simulation.

F.D.F. for period w ko
fo to

P.D.F. stands for probability density function. The Y-axis shows the
frequency of occurrence (0-100%) for each of the classes on the X-axis. The
user nominates a range of days of year. AusFarm then aggregates the
selected variables over these days for all years of the simulation and
allocates them to a class. The class boundaries are determined by taking the
range of values and dividing it into five or ten equal classes, depending on
the number of years involved. A PDF graph with value y should be read as
follows:

There is a probability y that the selected output will fall within the class
given on the X-axis.

AusFarm Tutorial | 23

C.D.F. for C.O.F. forperiod to
period from o

C.D.F. stands for cumulative distribution function; to be precise, this
presentation shows probabilities of exceedance. The X-axis of a C.D.F. graph
shows the range of output values and the Y-axis gives the probability that in
any year, the value of the output will be greater than a given level. The set
of outputs used to estimate these probabilities is computed as for a P.D.F. A
point (x,y) on a C.D.F. graph should be read as follows:

There is a chance y that the output variable will be greater than a value of x
at the given time of year.

24 | AusFarm training manual

5. Configuring a new simulation

5.1 Configuring and Initialising Modules

The first major step in constructing a simulation analysis in AusFarm is to configure the
simulation by adding the set of component modules in the simulation and describing
their inter-relationships.

Before configuring a simulation, the user should consider what set of processes needs to
be included in the simulation to answer the question of interest. The configuration that
is chosen should be the simplest that meets this criterion.

Building a simulation from scratch can be an involved process. Any of the components
from the model palette can be dragged and dropped onto a model tree in a simulation
window. The following instructions will use an existing simulation and go through the
configuration process to show how a simple simulation can be configured.

B Close any existing simulation and select the File | Reopen menu option and choose
the Example.afs simulation.

® In the example simulation click on the water module in the Models tree and then on
the Initialise tab. Fields of records and elements of arrays are organized into a tree-
structure, as shown in the figure below:

A \\vmware-host\Shared Folders\Documents\AusFarm'\Example.afs EI@
Twpe: Historical Start: [1Jan 1370 = | After processing open
End: |31 Dec 19280 B | | Simulation results ~
Modelz Initizlize Motes Logging Ermors
v @ Erample YWalue | Type Unit | default | min | max | |
2 array ”
-~ ;‘;‘:t‘:er -l [1] 150 double . mom 00
o @ paddockl -eal [2] 35.0 double mm 0.0
T —teal [3] 100.0 double] 0.0
-l [4] 100.0 double mm 0o
-teal [B] 100.0 double mm 0o
el [B] 100.0 double mm 0o
el [7] 200.0 double mm 0o
-l [8] 200.0 double mm 0o
el [9] 200.0 double mm 0o
[?EI--[XY] horizons array
--[m‘] params array
%----real evap_alpha 35 double mmdd”.. 35 30 45 o
< >

The Initialise tab can be seen in the right-hand pane of the simulation window. It
contains a grid in which each row represents a variable (or part of a variable), and there
are columns that display each variable's type and name, initial value, and (optionally)
units, default value, and minimum and maximum permitted value. The type of each
value is shown by the icon next to the variable’s name.

AusFarm Tutorial | 25

® The initial values (in the Value column) can be edited. Press F2 or click twice on a
value (leave a gap between the clicks). This activates an editor that allows you to
change the value. (Don’t change anything now.) Press Enter to deactivate the editor or
an arrow key to move to another value. Array items shown here can be resized by
right clicking on them and choosing Add or Resize.

The easiest way to specify the initial values of a module is by using its initialisation
dialog. Each component in the default AusFarm distribution has its own dialog.

® Open the initialisation dialog for the Weather module by double clicking on its icon
in the Model tree.

" |nitialise Weather

Source of weather data

® Locally in locally set File narme [*.zet) ||Dca|ity.set | Browise. .
ocality in locality se
) Single locality in fle Locality name Canberma [ACT) A
() Metacoess weather file Wwieather databass | | Browse...
() 5ILO weather file Augiliary data in path |weather | Browse. ..
(®) Standard [CO2)
() Constant [CO2)
()W ariable [CO2]
Ok Cancel Help

The Weather module is responsible for specifying the input weather data and some
further options about CO; levels. SILO format weather files can be selected here.

M |nitialise Weather

SeEugE gl ezsing dais File name |c:'\users'\her1 23 docurmentzt ausfarmbweatherwcoolamon. bt | | Browsze. .. |

() Locality i locality st

. A E le ati
() Single localiy in file Faten m

() Meticoess weather file Constant wind speed s

(®) 51L0 weather file

2001 lewel | 350 m+ 0000 | £ + [0000 |« 10-2£2 + [0.000 |« 10-%£2 +[0000 | « 10-5¢4
O Standard [CO2| [350_pom + [0.000 |£ + [0.000 | 0.000 |
(") Constant [C02)
(@) Wariable [C02]
QK Cancel Help

® Close the dialog and open the dialog for the Paddock.

The Paddock module allows you specify the area and slope of the paddock.

26 | AusFarm training manual

®» Examine the Stock initialisation dialog by double clicking the Stock module in the
Model tree:

Edit Stock

Genotypes Animals

Small kering
bd ediuarn b4

etinD Genotype name |Small Mering

(@ Sheep () Cattle Purebred ~
Breed Small Merino -
Breed standard reference weight m kg
Mortality
wheaner mortality

MNew Genotype Delete Breed potential fleece weight kq
b agirmurn fibre diameter 0
Fleece yeld 4
Peak conception at C5 3 1 2 3 El E4

Cancel Help

The Stock dialog shows that two genotypes are described using some parameters that
specify breed characteristics. Any of the breeds found in the Breeds dropdown list can
be used in the simulation. If you redefine a breed here it will use the parameters, you
have set.
® Close this dialog and then open each of the remaining dialogs in the simulation to
get a view of the initialisation requirements for these sub-models.

The Manager module is another special component. When you select it, you will see the
management script that controls much of the behaviour of the simulation.

®» Examine the management script by clicking on the Manager module in the
simulation tree. It contains a variety of different elements.

= Definition statements create variables that can be used in other places the script.

u

1 define real stocking rate = 10.0 ! wysthers/h
2z define real cfa years = 5.0

= Time specifiers determine when rules should be executed.

10 each 1 Jan
11 {

= References to external variables allow the rules to be influenced by the state of
the simulation.

44 if stock.cond score all < 1.0

= Events change the state of other modules.

a8 stock.sell group=g , numnber=stock.number [g]

AusFarm Tutorial | 27

= Control rules govern the order in which events are executed.

35 for g =

3 {

37 if age[g] »>= 3&5

38 stock.sell group=g ,
35

= Assignment statements set the value of defined variables.

1 to stock.no groups

* cfa wears

31 group count = stock.no groups

5.2 The Notes and Logging tabs

nunber=stock.number [g]

® Click on the Notes tab in the right-hand pane of the simulation window.

This tab contains an area where you can document the purpose and features of your
custom simulation in text form.

® Click on the Logging tab in the right-hand pane of the simulation window.

This tab contains options that allow details about the execution of a simulation to be
examined once it has been run. (Using the trace option adds significant time to the
simulation run and should only be used when there is an internal problem with the
simulation structure that must be solved.)

v @ paddock1

‘@ \\wmware-host\Shared Folders\DocumentstAusFarm'\Example.afs

Start: 1 .Jan 1970
End: (31 Dec 1980

Maotez Lodging Ermors

Lag erors to file

= | After processing open

=

Simulation rezults

(=[]

=

Type: | Hizstorical
Models Analysiz
w @ Example Errors
----- M manager
----- - output
----- G weather

| CUzerghhen 22%App0atahLocalhTempE sample_error log

Meszages
] Trace messages to file

Use component names

Show full mezzage details

Show connection detailz
Log proceszing times
Log from zinulated date:
Log o simulated date:

Wiew log file

Processing

Frocess time; 5.625 sec

C:W]zershher] 23%App0 atahLocalTemphE sample_trace. log

10141970

31241380

28 | AusFarm training manual

5.3 Sequencing the simulation

The modules in the simulation will have some default sequenced events triggered during
the execution of the simulation. If multiple Manager modules or multiple TextOut
modules are included in the simulation, it may be necessary to adjust when their logic is
processed within the daily timestep. Each module can have the timing of its default
subscribed events adjusted individually, but it is also possible to view the sequencing of
whole simulation.

® Right click the mouse on the top node of the model tree and choose Sequence.

‘@ Vwmware-host\Shared Felders\Documents\AusFarm'\Example.afs

Twpe: | Historical Start: |1.Jan 1970
End: |31 Dec 1980

Models Hnalyziz MWotes Loaging Emors
~ -4 Example || Enors
Collapse sub items Ctrl+Left
Expand sub items Ctrl+Right atahLocalhTe
Initialise
- Sequence % Ctrl+N e
Cut statlocalhTe
Copy Bt narmes
B zage detail:
Faste tion details
Delete q tirmes
=] Rename lated date:
ted date:
Diff this component...
Help

@ cC onfigure the simulation events

Sequence Components

To change the default arder of these events, just drag them into a
different part of the tree

~ - Sim ~
v 0
&3 paddockl.on_mass_change
}-3{_» paddock1. pasture. zpraytop
1 stock. sort
' B
L @8 time_server.update_time
~ - 100
----- + s paddock].init_step
----- + :—i:— paddock.pasture.init_step
----- < P stock init_step
- 1000
i + e weather.update_weather
- 2000
‘. M manager.do_management v

Cancel Help

s

The editing dialog has two tabs. The first one gives a view of the whole simulation
ordered by the sequence number in the timestep. The second tab allows editing of the

AusFarm Tutorial | 29

values. The default value is shown next to each custom value. The range is from 0-9999.
If you want to turn off the automatic sequencing of the event shown, then uncheck the
checkbox in the tree for that event.

In the example below you can see that the manager management script will have its
logic processed before the Output component no matter where it resides in the model
tree.

@ Configure the simulation events

Sequence Components

1'ou can edit the order walues by changing the numbers in the "Order column,
Tolnclude any of these events in the zimulation, check the box nest ta the

event name.
Component Events | Order | Default |
=8 Sim ~
+ @ time_zerver
—I-M manager
do_management 2000 2000
=2 autput
update_outputs 35999 9999
+-5 weather
— e paddock?
imit_step 100 100
allocate_light 3000 3000
allacate_water 5000 5000
[] on_mass_change]] W

Apply default orderings Cancel Help

Care should be taken when adjusting the sequencing. Changing options here can easily
‘break’ your simulation! However, this is a powerful feature of AusFarm that allows you
to fine tune the sequence of many components such as when the simulation contains
multiple Manager components.

Manager components also show their sequence when you hover over them in the
Models tree. This is very useful when the simulation contains more than one Manager
component.

v - Erample

----- M . manager

----- = Lagigtout

..... & Seq orden: EDDD|

& paddock]

ﬂ water

418 pasture

PR stock

----- ™ szupplement

30 | AusFarm training manual

5.4 Selecting and Storing Outputs

When a simulation is run, AusFarm can store the values of variables over time so they
can be shown or summarized in a report. Before variables can be used in reports, they
must be selected as part of an Output module.

B Select the Output module by clicking on its icon (=) in the Models tab of the
simulation window.

The Output component is a special case in an AusFarm simulation. When you select the
item in the model tree you are shown many of the variables that can be used for
reporting. The Outputs tab will replace the Initialise tab in the right-hand pane.

If you want to filter the list of variables by name you can start typing the name in the
Look for: text entry. It is also possible to filter the list to only show the outputs that are
selected. These filters can be used together if required.

ﬂ' Wemware-host\Shared Folders\Documentst\AusFarm'\Example.afs EI@

Type : | Histarical Start: |1Jan 1970 =p | After processing open
End: [31 Dec 1380 & Repot v

Models Outputs Motes Logging Emors

v @ Example Look for: | | Clear [Show selected anly
----- M manager
..... = output Sirnulation | Agaregation | Dec. .. | bliaz | Units |

..... fee weather B~z output ~
v €@ paddock] ---M manager

g water -5 weather
¥ pasture EI@ paddock1

& stock
ahic hame
----- w supplement O
....Dabc tvpe

~[C]8ke version

~[C]8he author

I active

~[C]ahe state

[l allocatar

~[CJredl area ha
[]kedl slope deq
E-[B light_profile

[]Be] zoil_fract

[]Be] water_uptake

[]kedl cover_green m 24,
[]keal cover_tat m"24..
[]keal height mm
[ﬂﬁ wtater

E|~3’: pasture

;....Dabc harie

E,....I:‘abc type v}

Record outputs every — Jutput location
= day v |Dutput.db Browsze...

-

The Outputs tab contains a grid containing variables that are organized into a tree-
structure.

AusFarm Tutorial | 31

® Click on the expansion button (#) by the Weather module’s icon in the Outputs tab.
A list of the output variables of the module will be revealed.

® Scan down through the list of variables and expand the variable named weather to
see its fields.

® Check that the cover_green, cover_tot variables are selected for output. Type cover
in the filter text entry.

For the floating point variables, the number of decimal places to be displayed can be
chosen here.

When an array type is selected, all its elements will be accessible for display.
The Aggregation and Alias columns can be ignored in most situations.

The output file location can be modified from this tab. It is good practice to have this file
name match that of the simulation file. It is possible to run more than one simulation
simultaneously. To do this the output modules must save their outputs to different files.
(Note that AusFarm results files are Microsoft Access or SQLite data bases, but the data
is stored in a compressed binary form and can be exported after the simulation run if
the data needs to be summarised using any SQL processing.)

5.4.1 Exporting results

When using the database
output component, it is

@ \\wmware-host\Shared Folders\Documents\AusFarm\Example.afs

Type: | Histarical Start:
possible to export the results End:
from a simulation or Analysis | el Ouputs Notes Logging Erors
run into a single database. v-® E::ample Look for | | e C
. . PR U (N - manager
This is useful for collatingthe || - T _— [Ciren datinen [Agaregation
results from the simulation || = G weat Initialise
. v €@ paddd (7 Sequence Ctrl+MN
runs into a database that can &
. . ‘.sfs pl| sy Export outputs HDF...
be queried using SQL. el
q 8 Q -1’ stack Clear all output selections Firebird...
X T | | = supph :
® Right click the mouse on 4o Cut Ctrl+X Sl
MS Access...
the output component =1 Copy CtrleC | -
and choose Export Paste
7% Delete Ctrl+Del |
outputs. There are three I
=[I Rename |
storage formats o
Diff this component...
available. Choose SQLlite. e Liie
elp]
= e £

When the outputs are
exported into a database, they can be opened by the respective client tool. For SQLite
databases a useful application is SQLiteSpy.

® Install SQLiteSpy and then you will be able to open a database and view data as
shown below.

32 | AusFarm training manual

7 v — 3
U SQLiteSpy—C:\temp\data.db_ -w - - - A & & - [S

File Edit View Execute Options Help

Name [x| FH simulation

- [3 main

= g Tables (1)
@Columns
?5 Indexes (1)

#2 Collations (7) RunDescr StepDate weather_maxt weat... weat.. paddockl pasture_green_dm padd... stock... stock.. stock..
Example:High fertiity — 1980-12-26 28.1 16.9 0.0 13.4772 1351.5 122 879 1) -
Example:High fertiity — 1980-12-27 27.8 15.5 0.0 11.9608 1339.1 122 879 o
Example:High fertility 1980-12-28 32.2 14.5 12 10.4938 1326.81 122 879 o
Example:High fertiity — 1980-12-29 21.0 16.8 4.2 9.50898 1313.66 122 879 o
Example:High fertiity — 1980-12-30 24.5 13.5 0.0 8.61429 1299.07 122 879 o
Example:High fertility ~ 1980-12-31 30.0 9.0 0.0 7.78002 1284.78 122 879 a
Example:Low fertiity 1970-01-01 20,6 10.1 14.7 0.0 1989.84 999 999 o
Example:Low fertility 1970-01-02 12.2 7.6 6.1 0.0 1952.09 999 999 o
Example:Low fertiity — 1970-01-03 15.6 8.4 0.5 0.0 1912.18 999 999 1)
Example:Low fertiity — 1970-01-04 13.6 9.8 7.6 0.0 1873.7 999 999 o
Example:Low fertility 1970-01-05 23.9 8.6 0.0 0.0 18346 999 999 o
Example:Low fertiity — 1970-01-06 23.5 116 0.0 0.0 1796.86 999 999 o
Example:Low fertiity — 1970-01-07 22.2 121 0.0 10.9478 1760.65 999 999 o
Example:Low fertiity — 1970-01-08 24.4 13.0 0.0 21.3174 172471 999 999 1)
Example:Low fertiity — 1970-01-09 25.5 131 10 31.3857 1689.69 999 999 o
Example:Low fertility 1970-01-10 30.6 14.2 2.0 41,2267 1654.79 998 998 o =
4 T b

1l.& -
4 T b -
8036 returned 5QLite 3.8111

Viewing the results using SQLiteSpy

HDF (similar to NetCDF) format is also available. This requires a HDF viewer. When using
MS Access, the normal Microsoft Access database program will be able to open this
database.

When exporting data from an Analysis run, the records will have the name of the
treatment in the first column.

5.4.2 Using the TextOut component

If output from the simulation run is preferred in tab delimited text file format, then the
TextOut component can be used. It is available in the model palette. Once this is placed
in the simulation, variables can be selected for this component using its inbuilt
component dialog that you can access by double clicking on the component.

®» Add a TextOut component to the simulation by dragging the icon from the model
palette and dropping it on the top item (Example) in the model tree.

® Edit the filename property and type in a name for the output file.

AusFarm Tutorial | 33

Selecting output variables

There are two easy methods for adding component properties to the outputs list of
TextOut modules.

@ \\wmware-host\Shared Folders\Documents\AusFarm\Example.afs E\@

Type: | Historical Start: |1 Jan 1970 = | Alter processing open
End: [31 Dec 1980 B | |Repat ¥

Models Wariables Initialize Motes Logging Erors
v - Example Wariable | Walue | Tupe | Lt | default | min | max | |
""" L) (TR ~8lE filename output bt gring
= output fif imterval 1 inteqerd 1 1 365
weather L abe inbervalumit da tril d
~ i paddack] i sna it
: ﬂ weater ?----[Xp‘f] outputs afray
sf¢ pasture =800 summary_file <Rones shring

PR stock

----- W supplement
----- TextOut

1. When a TextOut module is selected, the Variables tab becomes visible. From
there the modules in the model tree can be expanded and properties can be
chosen by right clicking on them and added to the output list for any TextOut in
the simulation.

@ \iwmware-host\Shared Folders\Docurments\AusFarm\ Example.afs
Type: | Histarical Start: [1Jan 1370
» Right click on a End: |31 Dec 1380
property and Models Wariables Initialise Motes Logging
-#5 paddock A g
then choose the P ok Wariable . | Yalue | Tupe
B published_ev... array
TextOut M ! i:gf':_::x:m o B subscribed_e. . array
8B i i
component that -.8hE pe e fllename <ho... _ strivg
8Be version o it interyal 1 intege
the variable will L BBE authar ;»----abc itbery alunit day string
L ack e [
added to. active B outputs . arr.ay
coEBC gtate] e &bt zurnmary_file <hi... string
J&¥] published_events
Je] subscribed_events
» B driver_connections
of8al spoilage_time
v B stores
il EE (]
E....abc name
..... real spore
LB e Add this as an output to... TRgtDut
(®) readable () writeable <

34 | AusFarm training manual

2. Another method of adding variable to TextOut modules involves having an
Output module (database version) in the model tree.

@ \wmware-host\Shared Folders\Documents\AusFarm\Bxample.afs

Tvpe: Historical Start: |1 .Jan 1970 = | Af
End: |31 Dec 1980 =
tMiodels Outputs Motes Logging Emors
w % Example Look far: |green | Clear
----- M manager . -
..... I output Sirnulation |.~’-‘-.gglege
..... e weather B~z output
v @ paddaock1 Bl paddockl
ﬁ wiater |:| real cover_green
g pasture B-+fs pasture
- stock g
----- W zupplement
----- Tﬂm%

real green_dm
B green_dm_q
= [Jteal green_dmd
=D real green_cp
=|_| real green_n

none

When you select the Output module, the selection tree will become visible in the right-
hand panel. From here the variables can be filtered if required. Any variable can dragged
and dropped, using the mouse, onto a TextOut module.

Once a simulation has been run and outputs stored in a text file, right clicking on the
TextOut module and choosing View text output, will allow you to open the resulting text
file from the AusFarm user interface.

A third way of selecting variables to be stored by TextOut is when you double click on
the TextOut module a dialog will open where you can specify each variable you want to
store.

= Text Outputs

Results file |u:|utput.txt Browse...
Record results every = |day ~
Name Alias Title Aggregation Dec. Places Units Add
stock.number_tag[1] stock.number_tag[1] None 0
Insert
weather. maxt weather.maxt None 2
weather . mint weather.mint Mane 2 Clone
Delete
Clear
3 variables

[]summary File

et || top

AusFarm Tutorial | 35

Reporting at custom points in the simulation

If you need to store values at times other than daily, monthly or yearly it is possible to
tell the TextOut module explicitly when to store it’s outputs. From a Manager script you
can call the update_outputs event as shown below.

47 each 25 Dec

az {

459 TextOut.update outputs

50 }

Then it is important to turn off the automatic sequencing of the event. Right click on the
TextOut module in the Models tree and select Sequence. From the configuration dialog
turn off the sequence as shown.

@ Configure a compenent's events

Sequence Components

Y'ou can edit the order values by changing the numbers in the "Order” column. Ta
Include any of theze events in the simulation, check the box nexst to the event name.

Component Events | Order | Default |
=@ Sim
= TextOut
EL\r"update_nutputs 35999 35999

Apply default arderings Cancel Help

The TextOut module will then report it’s variables now only on the 25™ Dec each year.
This configuration is useful if you want to report only on special events in the simulation.

5.5 Comparing initial values of components

It is often useful to compare the initial values for like components in a simulation or
between simulations. Using the clipboard to copy the first module in the model tree and
then choosing the Diff menu option on a second module will invoke a difference viewer.

® A file difference viewer such as the free WinMerge package would be adequate.
Download this software and install it first.

® Configure the settings in the AusFarm Options dialog for the Difference viewer.

36 | AusFarm training manual

Options

Set AusFarm Options

General Advanced

Wariable Initislization Columns Mew Simulation
Type Add a Manager component
Urit Add an Jutput component
Drefault
Mindtta Recent files in the meanu
Models
Place newly installed models on the palette tab named
Standard | Show extended hints

td anager script
Wizible right margin line at character

External Toolz
Text Editar
|E:'\F'rogram Files\E mE ditar\E mE ditar. exe |

)) Browsze...
Difference iawmer e
|E:'\Pﬁr_am Files [«BE)WinkergeWwintergell exe) |

e ——
Browze. .

®» From the model tree select a module and then right click and select the Copy
option from the popup menu.

@ Wemware-host\Shared Folders\Documents\AusFarm\Example.af
Type: | Histarical Start: |1Jan 1570
End: |31 Dec 1920
Models “ariables Events tanager Scripl
v @ Example & define
----- M ranage - define
_____ T output Initialise Ctrl+I define

""" i’ weather (7. Sequence Ctrl+MN
~ &3 paddock ho1

f® wat b= AddFactor Ctrl+AlteF Tac
egg® past

R stock o Cut Ctrl+X fo:t:

----- & supplem) Copy Ctrl+C
----- TextOut Paste et <
75 Delete Ctrl+Del set 1
=]l Rename stoc]
stoc]
Diff this component... stoc]

2] Help
e

® Open another simulation or from within this simulation select another module in
the model tree of the same type and right click the mouse. The popup menu will

AusFarm Tutorial | 37

now have an extra option, Diff with.... Choose this option and the external
viewer will show the differences between these modules.

For Manager script modules, the text will be plain text as seen in the Manager Script
editor. For other modules, the SDML script in XML form will be shown. Although a little
cryptic this is still a useful means of checking for differences. Because this differencing
technique uses data stored in the clipboard, it is easy to do comparisons between
modules in different simulations.

ég WinMerge - [compl.sdml - Example_comp2.sdml] E\@
El File Edit View Merge Tools Plugins Window Help - |5 =
D & | B FCETF P ¢t B A @
| comp1.sdml - Example_comp2 sdml |
Location x | €A ers\herl23\AppData\Local\Temp\compl.sdml | C:\..3\AppData\Local Temp\Example_comp2.sdml
ml hefine real stocking rate = 20.0 define real stocking rate = 10.0 -
define real cfa years = 5.0 define real cfa years = 5.0
! Replacement ! Replacement
define real no_to_buy define real no_to_buy
define real group count define real group count
define integer g define integer g
each 2 Feb each 1 Jan
{ {
L L for g = 1 to stock.no_groups for g = 1 to stock.no_groups
stock.sell group—g, number=0.2. stock.sell group=g, number=0.2!
] i [K] i 3
Ln:1 Col: 1/47 € 1252 Win Ln:1 Col1/47 Ch: 1252 Win

An example of comparing two Manager scripts.

38 | AusFarm training manual

6. Specifying Management

Management activities in AusFarm simulations are represented as a series of events that
change the state of the various biophysical models that make up the simulation. For
example, irrigation is represented as an event that changes the amount of water present
in the soil profile, and the selling of livestock is represented as an event that changes the
number present of a specific group of animals in the simulation.

Each module has a defined set of management events that can be applied to it. When
and how these events take place is specified using one or more Manager modules. Each
Manager module contains a management script composed of statements that describe:

e When and under what conditions events are to be executed;
e Which module(s) are to execute an event;

e The parameters that determine exactly what happens when the event takes
place.

In the real world, the timing and nature of management activities often depend upon
the current state of the system. For example, irrigations (events) might be scheduled to
take place only when the soil water deficit (part of the system state) is greater than a
nominated threshold. Management scripts can respond to the state of the simulation by
accessing variables from the rest of the simulation. The values of these variables can
then be used to specify event parameters and the conditions that determine whether
events take place. They can also be combined into expressions and defined variables
that may then be used in management rules.

To develop management scripts, it is important to have a good understanding of the
variables and events that are available in the simulation.

6.1 Variables

In AusFarm, the variables of each module are used to represent the quantities used in
the equations and events that the module embodies. A “variable” in AusFarm includes a
wide range of quantities from a modeller's point of view, including:

State Quantities that may vary in time as the simulation is computed. The
variables value of a state variable must be known in order to compute the
dynamics of the module to which it belongs.

Constants Quantities that are (i) invariant in time and (ii) have the same value in all
modules of all simulations.

AusFarm Tutorial | 39

Parameters

Driving
variables

Output
variables

Quantities that are invariant in time, but may take different values in
different modules, either within a simulation or between simulations.

Quantities that are stored externally to a given module but must be
known in order to compute the dynamics of the module. They may (and
usually do) vary in time. Each driving variable must have one or more
sources; a source must be an output variable from another module.

Quantities that may be accessed by other modules in the simulation,
including for storage as results or for use in management scripts. Output
variables may be state variables, constants or parameters, but may also
be "summary" variables computed from them.

The variables that drive the simulation as a whole (e.g. weather data)
also appear as the output variables of modules that read them in.

Every variable in AusFarm has a name, a type, and a value. When referring to a variable,
its name may be qualified to ensure that the reference is not ambiguous: for example,
the sw variable within the paddock3.water module may also be referred to as

paddock3.water. sw.

The value of a variable can change through time as the simulation is executed. The initial
value of each state variable and parameter must be provided by the user in order for the
simulation to be computed; these two types of variables are known as initialisation

variables.

Variables come in three main kinds, or types: scalars, arrays and structures.

Scalars have a single value. There are four types of scalar variables:

Real

Integer

Text

Can be any numeric value. When writing a real value in a management
script, either decimal notation (e.g. =63 . 45) or exponential notation (e.g.
1.46E-5) may be used.

whole values: ...-4,-3,-2,-1,0, 1, 2, 3, 4, ...

may contain any text (i.e. zero or more characters). When writing a text
value in a management script, the characters are surrounded with single
guotes (e.g. 'xyz') to distinguish them from references to variables, which
are written without quotes. To place a quote character in a text value,
write two quotes: for example, writing 'quote (' ') ' gives the value

quote(').

40 | AusFarm training manual

Logical variables are either true or false. A true value is written as TRUE in a
management script, while a false value is written as FALSE (this is case-
insensitive)

Arrays are ordered lists of variables in which all the members (known as elements) are of
the same type. When writing an array in a management script (the Manager module),
the elements are surrounded with square brackets ([]) and successive elements are
separated from one another with commas. The name of the n-th element of the array
named array isarray [n] (nisknown as an index). The first element of an array
has index 1. Below is an illustration of what an array looks like in a Manager component
script.

define integer x[8] ! An array of integers called x

set x[6] = 99 ! Refer to the 6th element of array x

Structures are lists of variables in which the members (known as fields) may be of
different types. Since each field of a structure is itself a variable, it has a name and a
type. When writing a structure value in a management script:

e the structure is surrounded by brackets (());

e successive fields are separated from one another with semi-colons; and

¢ the value of each field is preceded by its name and a colon.

To refer to a field of a structure variable in a management script, append the field name
to the structure name, with a colon between them (e.g. seeds:soft_ripe).

define s = (fieldl:8; field2:'fox'; field3:- 99.9) ! A structure with three fields
set s:field2 = 'jumps' ! Refer to the second field of structure s
6.2 Events

6.2.1 Management events

A management event of a module represents an instantaneous change in the module’s
state variables. Each event has zero or more quantities, known as parameters, which are
used to specify exactly how the module’s state variables are changed.

For example:

Application of irrigation water to a soil can be represented as an event that changes the
amount of water present in the soil profile. The amount of water applied, and the rate of
application are parameters that affect how the added water will percolate into the soil.

AusFarm Tutorial | 41

The selling of livestock is an event that changes the number of a specific group of
animals that are present in the simulation. The group of animals to be sold, and the
number to sell are the parameters of this event.

An event is specified in a management script by giving its name, followed by the value of
zero or more parameters. Each parameter is written by giving its name, followed by an
equals sign (=) and an expression that is computed to give the value of the parameter
(see section 15.3 for more information about expressions).

! Send the "shear" event (with no parameters) to all modules that accept it.

shear

! Send the "buy" event to a specific module named '"cattle".

! Four parameters are given, with a space between the event name and first parameter
! and commas between the parameters.

! Note how the "number" parameter is specified as an expression that must be evaluated.

cattle.buy =0.5*stock rate*paddockl.area, ='steers', =8.0, =200.0

More detail about specifying events is given in section 15.2.

6.2.2 Sequenced events

The rate equations of components are also implemented as software events, known as
sequenced events. Each sequenced event is computed once per time step. AusFarm
handles the setting up of the sequenced events automatically.

These events are called "sequenced events" because the order in which they are
computed can affect the simulation's results. For example, if a Weather module
executes the logic that reads in the temperature data for a day after a plant growth
module uses the temperatures to compute growth of the plants, the resulting growth
rates will be different to those obtained if the weather data are read in before the
growth computations.

The order of computations within each time step is known as a simulation's sequencing.
The order is expressed by assigning a positive integer value (its ordering) to each
sequenced event in a simulation: an event with a lower ordering is executed before one
with a higher ordering. The order in which events with the same ordering value are
executed is left unspecified. Ordering values are only meaningful relative to one
another. AusFarm configures default sequencing for each simulation. This default only
needs to be changed under special circumstances.

Note: In terms of their implementation as software, there is no distinction between a
sequenced event and a management event, except that sequenced events may not have
parameters. The distinction between them arises from the purpose of the event code.

42 | AusFarm training manual

6.3 Discovering the Variables and Events for Modules

The variables and events that can be used in Management scripts are specialised for
each module in the simulation. To discover these, it is done through the component
palette on the main toolbar in AusFarm. The first option to use is the Info menu item.

c:smn]
™ e om TS

Info

(" Sequence

Change icen

2] Help
& Remove
Move to L4

% |nfo - Stock

H & Q [Show fully formatted
~N
CMP Component Stock
Executable C:\Program Files (x86)\AusFarm\stock.dll
Version 1.4
Class Stock
Author CSIRO Plant Industry
Properties
name
Info Component name
Access read
Init F
Type _ .
Kind string
Description The name of the component or model
type
Info Component class type
Access read
Init F
Type .
Kind string
Default Stock
Description This component belongs to a specific class
version
Info Model version W
Access read
File Date: 6/09/2018 2:16:48 Ak
C:\Program Files [#8E]4wsF armhstock. dil Help

The component information dialog for the Stock component

AusFarm Tutorial | 43

The information dialog shows all properties and events for a chosen module. Each
property will have a name, accessibility, type and description. If the property is a
structure it will show the fields and their types. Events will show the parameters used to
pass values to the module.

¥ Info - Stock

H =] 'Qa [+ Shows fully formatted
Kind |double , kg/ka
~
Events
init_step
Kind subscribed
do_stock
Info Computes development, intake, growth and
reproduction of all animals
Kind subscribed
buy
Info Causes a given number and type of animals to
enter the simulation
Kind subscribed
Fields
Name genotype
Kind string
Name number
Kind integerd
Name sex
Kind string
Name age
Kind double
Name weight
Kind double , kg
W
Name fleece_wt
File Date : 12/02/2020 2:08:52 P
CAProjects\CMPAAusF armbstock. dil Help

Another way to get access to all the module detail is using the help system. From the
same menu on the main toolbar the help pages can be opened.

Info
(- Sequence

Change icon

HIE:I|:J-L\\F.3

& FRemove

Move to L4

44 | AusFarm training manual

1. Purpose of Component
The STOCK component encapsulates the GRAZPLAN animal biology model, as described in:

Freer M, Moore AD & Donnelly IR (1997). GRAZPLAN: decision support systems for Australian grazing enterprises. I The animal biology model for feed intake, production and
reproduction and the GrazFeed DSS. Agricultural Systems 54, 71-126.

Animals represented in a compenent instance may be of different genotypes. In particular, sheep and cattle may be instance.

The animals dby a comp d into groups. The members of each animal group have the same genotype and age class, but may have 2 range of ages (for
example, an animal group containing mature animals may include four-year-old, five-year-old and six-year-old stock). The members of each animal group also have the same stage of
pregnancy and/or lactation: the same number of suckling offspring: and occupy the same paddack. The set of animal groups changes as animals enter and leave the simulation, and as
physiological events such as maturation, birth or weaning take place. Animal groups that become sufficiently similar are merged into a single group

P within a single comp

instance are cl

Each animal group has a unique, internally-assigned integer index, starting at 1. Because the set of groups present in a component instance is dynamic, the index number associated with a
particular group may change over time

Each animal group is also assigned a paddock. The forage and supplementary feed available to a group of animals are determined by the paddack it occupies. Paddocks are referred to by
name in the STOCK component. Itis the user's responsibility to ensure that paddock names correspond to instances of the PADDOCK component or other sources of necessary driving
variables

Each group alsa has a user.assigned #zg and priority, which need not be unique. Tag values are generally used to manage distinct groups of animals in a common fashion. For example, afl
lactating ewes may be assigned the same tag value, which may then be used in management rules that keep them grazing together. Animal groups with different tag values are not merged
even if they are otherwise similar. If tag values are assigned sequentially starting at 1, they can be used to generate summary variables. Priority values are used to allocate animals to
paddocks in the draft event.

2. Initialisation Properties

The initialisation variable set is nearly completely optional The idea s to allow the user to specify a minimal information set as well as a maximally detailed initialisation

Property Type Units Required? Description
param_file string No Name of an XML file containing genotypic parameters. [f the null string is specified, a default parameter set
that is compiled into STOCK DLL is used. If a file name is used, the parameters in the file modify (rather than
replacing) the default parameter set
genotypes record[] Yes Information about each animal genotype:
manme string Name used to refer to the genotype in management events.
cclam_brosd string Maternal genotype (see notes)
csire_breed string Patemal genotype (see notes)
:gengration integerd Number of generations of crossing: 0 denotes the pure-bred matemal genotype (in which case sire_breedis
not used), 1 afirst cross, 2 a second cross (75% sire-23% dam), etc.
W double kg Breed standard reference weight. The default value depends on dam_breed and sive_bresd.
conception double[] N Expected rates of canception with 1, 2 and 3 young for mature ewes or cows in average body candition,
over a mating period lasting 2.3 oestrus cycles. Only the first two elements are meaningful for cattle.
death_rate double Base rate of mortality in mature animals_Default is 0.0.
cref fleece_wt double Breed reference fleece weight in sheep. The default value depends on dam_breed and sire_breed.
max_fibre_digm double Maximum average wool fibre diameter in sheep. The default depends on dam_éreed and sire_breed
: fleece) double Clean fleece weight as a proportion of greasy fleece weight in sheep. Default is 0.70.
peak_mill double Potential maximum milk vield per head, in 4%6 fat-corrected milk equivalents, in cattle. Default is 20.0.

The help file for the Stock component

AusFarm Tutorial | 45

7. Contents of Manager Scripts

Manager component scripts are basically just a collection of statements. These

statements include:

e Time specifiers

o Prescribe when rules should be executed

o They are optional but used frequently

e Rule statements

o

(@]

o

(@]

Event rules trigger simulation events

Assignment rules set values of variables or module properties

Control statements control process flow

Subroutine calls access shared code

e Subroutines

(@]

Contain common/shared code

e Event handlers

o Executed when an event occurs in another module

e Comments

o Always use comments! They make your scripts maintainable.

7.1 Time specifiers

Each rule statement has two main parts: a time specifier and a rule. The time specifier
denotes the set of time steps on which the rule is to be evaluated. The time specifier is
optional; if it is not given, the rule is evaluated on each day of the simulation.

Examples of time specifiers are:

on 1 Apr 1980
each 25/7

from start to 31 Dec 2001 repeat 7 days
from 15 Feb to 15 Apr repeat 1 month

on finish
simulation

!
!
!
!

! single date

25 July in each year

! weekly from the start date

weekly

! on the last timestep of the

When giving a date or day-of-year in a time specifier, the month may be given as either a
month number (1 to 12) or as a three-letter abbreviation. Years should be given with

four digits.

46 | AusFarm training manual

7.2 Rules

Rules come in four main types:

1.Event rules cause management events to be transmitted to the rest of the simulation.
2.Assignment rules change the value of a variable.

3.Control rules are used to control the order in which other rules are executed. There
are four kinds of control rule: rule lists, conditional rules, FOR loops and WHILE loops.
Every control rule contains one or more sub-rules, which may themselves be control
rules. A rule statement may therefore be made up of a nested set of rules, as shown in
the examples below.

4.Subroutine calls, used in conjunction with subroutine definitions, can be used to
invoke combinations of rules that may need to be used repeatedly.

7.2.1 Eventrules

An event rule is specified by giving the name of the event together with zero or more
parameters, which are separated by commas. The number of parameters and their types
depend upon the event (see section 16 for details). The event name may need to be
qualified to inform the simulation which module (e.g. paddock or pasture species) it is to
apply to.

It is the rule-writer’s responsibility to ensure that events are specified with the correct
parameters and that parameter expressions are of the correct type.

Parameter values may be given as constants, but they may also be given as expressions
that are evaluated to provide the value of the parameter (see section 15.3).

When specifying an event, it is usually possible to give fewer parameters than set out in
section 16. In this case the remaining parameters are assigned a default value which is
usually zero, FALSE or the null string according to type.

Examples of event rules are:

paddock3.ryegrass.sow 10.0 ! Note use of qualifier

move 2 'paddock3’ ! Unqualified - only livestock have "move"
! Note the single quotes around the string

buy 'wethers', 1l0*paddockl.area, 18.0, 50.0 ! No parameter names-legal but difficult to
! read. Note the use of an expression in a
! parameter.

7.2.2 Assignments

Assignment rules change the value of a variable. This variable may be one that has been
defined within the manager script (see section 3.4) or it may be one of a subset of state
variables that may be reset from the manager. Assignment rules take the form

AusFarm Tutorial | 47

set name = value variables defined within the manager script
reset name = value state variables of other modules

where name identifies the variable and value is an expression that gives the new value
for the variable.

It is the rule-writer’s responsibility to ensure that the name refers to a variable defined
within the management script, and that the value is of a type that is compatible with the
variable to which it is to be assigned.

Examples of assignments are:

set x = 10.0

set w = w + number[i] * weight[i] ! Part of getting a weighted average
set pasw[i] = 0.0 ! Assignment to an array element
reset paddockl.clover.fertility = 0.85 ! Assignment to an external variable

7.2.3 List or block of rules

Lists of rules group one or more rules together, ensuring that they are evaluated in
sequence. This is formed by surrounding the sub-rules with curly braces {} and
separating the sub-rules, either with a semicolon or by placing them on separate lines.

An example of a list of rules is

set x = 99.0 ' A rule on its own line
set g = 6; set p = 'paddockl' ! Two rules, separated by a semi-colon
move g, o) ! Same as "move 6, 'paddockl'"

It is possible for lists of rules to be nested several levels deep; as a result it is beneficial
to indent them neatly.

7.2.4 Control Statements

Conditional rules

Conditional rules take one of two forms:

if condition sub-rule
if condition sub-rulel else sub-rule’

The “condition” is an expression that evaluates to a logical value (TRUE or FALSE).
When the rule is evaluated, the value of the condition is computed. If it is true, then the
first sub-rule is evaluated. Otherwise, if the else keyword and second sub-rule have
been given, the latter is evaluated instead. If the condition is false and there is no
second sub-rule, then the manager moves on to the next rule.

48 | AusFarm training manual

Expressions with numeric values can be used as the condition in a conditional rule. In
this case, any value other than zero is taken to mean TRUE and a zero value is taken to
mean FALSE, in accordance with the type-conversion rules.

If the first sub-rule is not a list rule, it must be placed on a new line.

Examples of conditional rules are:

if x < 10.0 { set x = 10 } ! Same as "set x = max(x, 10.0)"
if b ! OK to put sub-rules on a new line
paddockl.water.irrigate 20.0 ! This is sub-rulel
else
paddockl.water.irrigate 10.0 ! This is sub-rule2
if sheep.tag nofi] =1 ! Here the sub-rule is a list rule
{
sheep.shear i ! Sell animal group "i" off-shears
sheep.sell i, sheep.number[i]

} ! Neatly indented...

FOR loops

FOR loops take the form:

for variable = start to end sub-rule

In this rule, variable must be an integer variable defined within the manager script
and start and end are expressions that should evaluate to integer values. When the
rule is evaluated, the values of start and end are evaluated. The sub-rule is then
evaluated repeatedly, with the nominated variable set in turn to each of the values
start, start +1 ... end.

e If the sub-rule is not a list rule, it must be placed on a new line.

o If the value of start is greater than the value of end, the sub-rule is not evaluated.

e |t is inadvisable to set the value of the control variable within a FOR loop.

e At the end of the FOR loop, the value of the control variable will be set to end+1.
The examples of the FOR loop shows how to handle two common situations:

= the case where a task must be performed for each group of animals in a Stock
module
= the calculation of a summary variable from one or more arrays.

\ for i = 1 to animals.no_groups
sheep.move i, 'paddock?2’

set pasw = 0.0

AusFarm Tutorial | 49

for i = 1 to no layers I will only work for a single-paddock

{

\ set layer asw = max(0.0, sw dep[i]-1115[i]) ! system (variables are unqualified)
set pasw = pasw + layer asw ! Sum over layers of "layer asw"
}
WHILE loops

WHILE loops take the form:

while condition sub-rule

The condition is an expression that evaluates to a logical value. When the rule is
evaluated, the value of the condition is computed. If it is TRUE, then the sub-rule is
evaluated. The condition is then evaluated once more, and if it is still TRUE, then the
sub-rule is evaluated again. The sub-rule is repeated until the condition evaluates to be
FALSE. If the condition is FALSE when it is first evaluated, the manager moves on to
the next rule.

It is the rule-writer’s responsibility to ensure that the sub-rule will eventually cause the
condition to become FALSE. If not, the loop will continue to be evaluated indefinitely
and the program will have to be terminated from the Task Manager.

Because of the above, it is usual for the sub-rule in a WHILE loop to be a list rule.
If the sub-rule is not a list rule, it must be placed on a new line.

An example of a WHILE loop is:

set i = 10
while i > 0
{
set x = x + 1
set i =1 - 2 ! Change a term in the condition...

7.2.5 SUBROUTINE calls

Subroutines may be defined which allow a group of rules to perform a specific task while
remaining relatively independent of other portions of the code. Parameter lists may be
used to transfer values to a subroutine; within the subroutine, the parameters are
treated as const variables. Although one subroutine may call another, recursion is not
supported (that is, a subroutine may not call itself). Rules within subroutines may access
variables defined within the manager script and “external” variables from other
modules, just as ordinary rules may do. Additional variables may be defined within a
subroutine; such variables have “local” scope and may be used only within the
subroutine where they are declared.

50 | AusFarm training manual

SUBROUTINE definitions take the form:

subroutine subroutine-name (parameter-1ist) { rule-1list }
Calls to a subroutine take the form:

call subroutine-name parameters

An example of a subroutine definition and subsequent call is

subroutine join ewes (ram breed: string; no days: integer)

{

define integer group ' A variable of local scope, used as a loop counter
for group = 1 to animals.no_groups
if (animals.tag no[group] = MATURE EWE)
animals.join group=group, mate to=ram breed, mate days=no_days

}

each 1 Mar
call join ewes ram breed = 'Small merino', no days = 30 ! Parameters values are passed
! to a subroutine by using
! the same syntax as event
rules

7.2.6 Indirection

Indirection is useful for referring to entities such as modules or module properties or
events based on a list of text values. The @() operator converts a text string into a
reference to a module or property.

In event names:

@ (module-name-expression) .event

In expressions:

@ (variable-name-expression)

Indirection is almost always used inside an iteration and/or a conditional statement that
provides the context.

Selecting a module in a paddock in order to perform an event on it

padd _name[l] = 'paddockl'
padd name([2] = 'paddock2'
padd name[3] = 'paddock3'

for padd = 1 to 3
@ (padd_name[padd]) .grass.kill propn herbage=1.0, propn seed=0.0

Building arrays of summary variables across paddocks

AusFarm Tutorial | 51

for padd = 1 to no_paddocks
{
set padd deep drain[padd]
set padd cover[padd]
set farm area = farm area

@ (padd_name [padd] &'.water.model.drain")
@ (padd name [padd]&'.cover tot')
@ (padd name[padd] & '.area')

+ 0

7.2.7 Event Handlers

By default, management rules are evaluated at each time step of the simulation, but it is
also possible to define sets of rules which are evaluated in response to events issued by
other components within the simulation. Data associated with the triggering event are
passed to the handler via a parameter list. Units of measurement may be specified for
each parameter. The declared data types and units of parameters must be compatible
with those provided by the component sending the event.

EVENT HANDLER definitions take the form:

on event event-name (parameter-list) { rule-1list }

Here is an example of an event handler:

define real avgt
define real peak radn = 0.0

on_event Weather.newmet (today:real; radn:real 'MJ/m"2'; maxt:real 'oC'; mint:real 'oC';
rain:real 'mm'; vp:real 'hPa') ! NOTE: The entire parameter list must be on a
! single line. It is shown here as wrapped only to
! allow it to fit within the page
{
set avgt = (maxt + mint) /2.0 ! Calculate a daily mean temperature in response
to a
! "newmet' event
set peak radn = max(radn, peakradn) ! Keep track of the maximum radiation received
! on a single day

7.2.8 Comments

Use comments to clarify your intentions in the script. Make your code timeless!

P

There ars £ lamb sale policies considered:
1 = 5211 811 lambs &t & target weight, or at 3 finsl date
Z = sell lambs when thelr rate of welght gain falls helow & threshold

R I R R EEE——————————

52 | AusFarm training manual

Comments can be multiline as above, end of line or embedded in code.

Multiline comments are wrapped by /* */characters. Use this technique for
embedding comments in the middle of lines also.

7.2.9 Manager Script Expressions

Scripts contain lines of code that are called expressions. These expressions can include
constants, variables, operators, and functions.

e (Constants
o lIdentifiers that have fixed values
e Variables
o lIdentifiers that are changeable in value
e QOperators
o Perform arithmetic processes, relational tests, logical joins
e Functions
o Access to common expressions and algorithms

7.2.10 Constants

These identifiers are set once, and their value remains constant.

Identifier
1 : Value
2 define const integer 2 /,’:._.’-:er of grazeable paddocks
3
4 define const text padd_name[FADD_CDIJ’NT] = ['farm.hillOl", farm.arable0l

5

€ define const integer JOINING DAY
I

DayOf¥ear('1l-Dec')

\ Expression

e Real-valued constants may be given in decimal or exponential format (e.g. 1.34,
6.77E-2).

e Integer-valued constants are given in decimal format (e.g. 999, -1).

e Text strings are always surrounded by single quotes (e.g. 'Hello, world'). The quotes
distinguish a text string from a reference to a variable.

e Logical constants are given as TRUE or FALSE (case-insensitive).

e |t is possible to have constant values that are arrays. Each element of an array should
have the same type. To denote an array, surround it with square brackets [] and
separate each element with a comma:

AusFarm Tutorial | 53

define const REAL ARRAY
| define const FOX ARRAY

[0.5, 0.6, 0.7, 0.8, 0,9 1
[['"quick', 'brown', 'fox'],
['"jumps', 'over', 'the', 'lazy', 'dog'l]]

Note that in the second example, the array elements are themselves arrays, making a
two-dimensional array. (Note also that the sub-arrays need not be of the same length!)

A value may also be a structure, i.e. a collection of named sub-values called fields. To
denote a structure, surround it with brackets (), precede each field with its name
followed by a colon, and separate fields with semi-colons:

define const STRUCT VAR = (text field: 'quick'; real field:99.9;
array field:[1,2,3,4])

Typically, in an AusFarm script constants are written in all upper case to make visual
recognition easier.

7.2.11 Variables

Variables in expressions are referred to by name. A variable may be defined within the
manager or it may be any variable that can be accessed from the rest of the simulation.
Variable names may need to be qualified in the same way as event names.

define real fioc_to buy
define reall group_count
define intege

|dentifiers

Assigned a value
set g ock.no groups + 1

The elements of an array variable or the fields of a structure variable can be referred to
using the forms array[index] and structure: field respectively. Since
elements in arrays and fields in structures may themselves be arrays or structures, these
references may be nested:

seeds[3] :unripe soft ! Field "unrip soft" within element 3 of "seeds"
fool[i,j] ! Same as foo[i][7F]
7.2.12 Operators

The following operators may be used in expressions:

Arithmetic operators

54 | AusFarm training manual

+ Addition Numeric (integer if both arguments are integer, real

otherwise)

- Subtraction Numeric (integer if both arguments are integer, real
otherwise)

* Multiplication Numeric (integer if both arguments are integer, real
otherwise)

/ Division Real

A Power Real

mod Modulus (remainder) Integer

div Integer division Integer

Relational operators

= Equal to Logical (TRUE or FALSE)
/= Not equal to Logical
< Less than Logical
> Greater than Logical
<= Less than or equalto Logical
>= Greater than or equal Logical
to

Logical operators

and And Logical
or Or Logical
not Not Logical

Text operator
& Concatenation Text

Brackets () may be used to govern the order of evaluation of operators.

AusFarm Tutorial | 55

It is the rule-writer’s responsibility to avoid invalid arithmetic operations such as
divisions by zero.

if age[g] >= 365 * cfa vyears

Logical operators are frequently used in conditional statements like the above test.

7.2.13 Functions

A variety of functions are also defined for use in expressions. Arguments to functions
may themselves be expressions which are separated by commas, as in the following
examples:

max| -3, min{ 3, i))
apper ('abc')

average (| x[1], =[2], x[3], =[4])

average| x) !' Same a5 the previous one

Arithmetic functions Returns

max() Maximum Integer if all arguments are integer, real
otherwise

min() Minimum Integer if all arguments are integer, real
otherwise

sum() Total Integer if all arguments are integer, real
otherwise

Average() Arithmetic mean Real

exp() Exponential (e¥) Real

In() Natural logarithm Real

sin() Sine Real

cos() Cosine Real

atan() Arctangent Real

round() Round to nearest Integer

integer

floor() Integer next below Integer if argument is integer, real otherwise

Text functions Returns

max() Maximum Text

56 | AusFarm training manual

min() Minimum Text

upper() Uppercase Text

lower() Lowercase Text
C t the value t)

str() onvert the value to text Text

Optional second argument can be a format string or an
integer. An integer will specify the number of decimal
places to display in the converted value.

Format string: ‘4.3f" or ‘2d’ where d is used for
representation of integer arguments and f for floating
point values.

Count the number of elements in an array.

length() Integer
Date functions Returns
Return the day number of the year where Jan 1 = day 1.
dayofyear() 4 y 4 Integer
e.g.
dayofyear(‘1-Jul’)
dayofyear(‘Dec-31’)
dayofyear(’12 Aug 1961’)
Where delimiters can be ‘-“or ‘‘ or ‘/
Month names must be the first three characters from the
English month name.
The Year must be four digits. Where the year is not
specified a non-leap year is assumed.
datewithin() Checks if the day number is between two dates. Returns true if
the date is
between either
define logical inperiod = FALSE date or equal to
define integer istart = dayofyear('l5-Dec'); either date.
define integer iend = dayofyear('15-Feb'); Allows for the
start and end
, _ L _ _ period including
set inperiod = datewithin(day, istart, iend) .
1 Jan (wrapping
over the start of
the year).
Other
resize() Resize an array The array with
the new size.
New scalar
Examples: elements will be

AusFarm Tutorial | 57

initialised to

set arrayl = resize(arrayl, 5) zeroes or empty

strings.

! where array3 is a two dimensional array

set array3[l] = resize(array3[l],
Length (array3[1]) + 1)

pos()

Checks the array or string for the position of an item. An integer value
specifying the
index. Zero is

define text array[3] = ['one', 'two', X
"three'] returned if the

set p = pos('three', array) I3 item Is not

found.

define double darray[3] = [0.1, 0.11, 0.111]

set p = pos('0.1', darray) 1

define text astring = 'lolg text form'

set p = pos(l, astring) 13

define integer iarray[3] = [1, 11, 111]

set p = pos(ll, iarray) 2

If the expression parser encounters an argument to a function or operator that is not of
the required type, it will attempt to convert it according to the following rules:

From To

Real Integer The value is rounded off.

Real Logical The value will be converted to TRUE if non-zero and to FALSE if
zero.

Real Text If the absolute value is less than 0.000001, the value is converted
to a string using exponential format (e.g. 1.23763567E-8).
Otherwise it is converted using decimal format, with enough decimal
places to ensure that 6 significant figures are displayed. At least one
decimal place is always given.

Integer Real The same value is returned.

Integer Logical The value will be converted to TRUE if non-zero and to FALSE if
zero.

Integer Text The value is converted to its decimal representation.

58 | AusFarm training manual

Text Real The string value will be parsed into a number. If it cannot be parsed,
the simulation will halt.

Text Integer As for text-to-real conversion.

Text Logical The value will be converted to TRUE if the string equals ' true'
(case-insensitive) and to FALSE otherwise.

Logical Real TRUE is convertedto 1.0 and FALSE to 0. 0.
Logical Integer TRUE is converted to 1 and FALSE to 0.

Logical Text TRUE is converted to ' true' and FALSE to 'false’'.

Variable values are obtained from the rest of the simulation as the expression of which
they form a part is evaluated. As a result, if a variable value changes in response to a
manager event, its value in any expressions evaluated subsequently will be the altered
value, even within the same time step.

7.3 Definition statements

As noted above, expressions may use variables that are defined as part of the manager
script. Before such variables are used, however, they must be defined using a definition
statement.

A definition statement begins with the keyword define, followed by one or more
variable definitions separated by semi-colons. Each variable definition consists of a
variable name, which may be preceded a type specifier, and followed by an initial value
for the variable. The definition may further be preceded by one of the qualifiers const
orvolatile. If the const qualifier is present, the variable must be assigned an initial
value; otherwise, the type specifier and initial value are optional. Any subsequent
attempt to modify the value of a variable defined with the const qualifier is regarded
as an error. The volatile qualifier is used to indicate that the value of the variable
may be set by other components.

An initial value for a defined scalar variable can be the result of an expression. Using an
expression such as a function like DayOfYear() is a typical use. See an example below.

Type specifiers are made up of one of the keywords real, integer, text or
boolean, optionally followed by one or more array lengths surrounded by square
brackets and separated by commas (see below for examples)

It is an error to define the same variable name more than once within a single manager
script. The only exception is that a “local” variable may be declared within a subroutine
using the same name as a variable outside the subroutine. When this occurs, all
references to that variable name within the subroutine refer to the “local” variable.

If a variable name is defined within the script that is the same as an “external” variable,
the name will be taken to refer to the manager variable when it is used in expressions.

AusFarm Tutorial | 59

If the type specifier is omitted, the type is inferred from the initial value. If no initial

value is given, the type of the variable is taken to be the same as that of the preceding

variable in the list of definitions. For the first variable in a list, it is taken to be a real
number.

The initial value is preceded by an equals sign. It is specified in the same way as a
constant in an expression (see above).

If no initial value is provided, then the initial value of the variable is set as follows:
= numeric values are set to zero
= text values are set to the empty string
= logical values are set to FALSE.

Here are some examples of definition statements:

define x = 0.0
X

define ! Same as the previous definition

define integer i; j; k ! All are integers

define integer m; n; text t ! Different types within one statement
define breed = 'Angus' ! Text variable (type inferred from initial
value)

define volatile z = -999 ! Integer variable (type inferred from value)

! which may be set by other components
define const real pi=3.1415926 ! Real constant

define const integer sow date = DayOfYear (‘l1-May’)

define real x arr[20] ! Array of real numbers
define real y arr = [9.0,8.0,7.0,6.0] ! Also an array of real numbers
define real array2d[100,100] ! 2-dimensional array
define struct = (a:9.0; b:5; c:! Stlrillg") ! A structure has to be defined using an
initial
! value

7.3.1 Advanced initialisation of variables

Variables and constants can be initialised with the results of expressions.

For example:

16 define text file prefix = 'c:‘temp'\SimpleMixed’

17 define real file wersion = 1.0

18 h

19 define const string file name base = file prefix & ' v' & str(file version, '3.1f")

28

2l define const integer join start = DayOf¥ear('l-Feb') ! Joining dav-of-vear for sheep

When initialising complex variables, it is now possible to use expressions to set values.

This can be done within arrays of records.

60 | AusFarm training manual

{1 Feb)

These are valid:

4 define test = (fieldl: [sin(20), 901 * 34.56)] ; field2: 'Mathematical')
sl

6 define test?2 = (fieldl: [DayOfYear('l-Mav'}), 222] ; field2: (subfieldl: co=s(45); subfieldZ:

v

When initialising an array, each successive element will be assumed to follow the type of
the first element. For example:

2
8 define test_array = [93.23, 3, 5] ! fleating point values
4

;%)

£ define test_array2 = [56, 34.012, 4] ! this is invalid as the second element canneot be storsd as an integer

-

Arrays can also be initialised using a constant multiplier:

set number purchased = [0] * NUM TAGS

zet paddocknames = ['-'] * COUNT
define dasharray = [['-"] * 3] * 2
Is the same as:
define dasharray = [['-',"-","-"1,["-","-","-"11]

This syntax can be used for numeric and text arrays.

7.3.2 Using constants as array size specifiers

When defining the size off arrays it requires the integer value of the number of
elements. If an integer constant is declared in the script previously then this constant
can be used in the place of the literal integer.

define const integer padd count = 10 ! Integer constant
define string paddock names[padd count] ! Use integer constant as array size

7.4 Examples of complete statements

Here are some valid manager statements for a simulation with components called
paddockl, soilwater, subclover, ryegrass, and merinos:

AusFarm Tutorial | 61

define x = 100; y; =z

define text nextpadd

define some sw = [0.10,0.12,0.15,0.22, ! Array of real numbers, split over two lines
0.30,0.30,0.30,0.34]

v & z are initialised at zero

from start repeat 1 months
{ merinos.move nextpadd }

! Another rule would set "nextpadd"

on 1 apr 1980
{

! Use a defined variable to trigger an event

set z = subclover.green dm + ryegrass.green dm

if z > 700

{
merinos.buy sex='wethers', number=10*paddockl.area, age=18.0, weight=50.0
merinos.move group=merinos.nogroups, paddock="paddockl'

}

each 15 dec ! Shear all sheep at least a year old

for i = 1 to merinos.no _groups
if merinos.age months[i] > 12
merinos.shear group=i
paddockl.soilwater.irrigate amount=pet - rain ! Daily irrigation

A more complete set of examples can be found in the AusFarm User Notes documents.

7.5 Management Events Summary

Stock component

buy Buy animals into the simulation

sell Sell animals out of the simulation

shear Shear (sheep only)

join Commence mating

castrate Castrated unweaned male lambs or calves
wean Wean some or all unweaned lambs or calves
dryoff End lactation in cattle

move Assign a group of animals to a paddock
split Divide a group of animals into two groups
tag Assign a “tag value” to a group of animals
Sort Sort the list of groups of animals by tag value

Supplement component

62 | AusFarm training manual

buy Purchase supplement
feed Place supplement in a paddock
reset Removes all residual supplement from a paddock

Soil Water component

irrigate Add irrigation water to the soil

Pasture component

Sow Sow seed of the pasture species

spraytop Crude analogue to spraying this species with glyphosate

kill Kill herbage of this species only

cultivate Incorporates herbage and seeds into the soil

conserve Removes herbage and (optionally) stores it in a Supplement module

Cashbook component

earn Acquire cash
spend Spend cash
report Write a gross margin report

AusFarm Tutorial | 63

8. Writing management scripts

A management script is made up of a collection of statements. Most statements define
rules. At each time step, each rule statement in the script is evaluated to determine
whether any management events should be issued to the rest of the simulation for
processing.

The order in which the statements forming a management script are evaluated is not
defined. To ensure that rules are evaluated in an order, control rules must be used (see
below).

Comments may be placed in a management script, preceded by /. Multi-line comments
or comments in midline can be enclosed using /* */as in the C and C# languages.

The script editor colour-codes various elements of a script to assist the user in
identifying them. Keywords are shown in dark blue; numeric values and dates in blue;
text values in magenta; event parameters in green and comments in red.

8.1 Using the script editor

8.1.1 Code completion

When typing management script and the name of one of the components is followed by
a period, by waiting for around one second a window will popup showing a list of
properties and events that belong to this component. In the example below you can see
a list of the events that can be triggered in the stock component. Highlight the preferred
event in the list using the up or down arrow keys on the keyboard or use the mouse
cursor to select it. By then pressing enter on the keyboard it will be inserted into the
Manager script.

Models Variables Everts Manager Script® Motes Logging Emors

v @ Example € define real no to_buy
- M manager 7 define real group_count

autput 2 define integer g
weather 5

paddockl 10 each 1 Jan

ﬁ water 114

‘ﬁ' t' iasture 1z for g = 1 to stock.no_groups
- zuopcplement 13 stock.sell group=g, numbker=0.25%stock.number[g]
------ TextOut 14

15 set g = stock.no_groups + 1
1& set no_to_buy
17 stock.buy ge I
1s stock.tag group=g, valus=g+l
15 st,oc:k.l

ith_day= . min_years= 3= 30
21 -+ subscnbed buy genotype= | number— zEN= age— welght— fleece wit=, c:ond E mated to— pregnant— Iactatlng—

22 = subscribed castrate group= . number= Conwerts ram lambs to wether lambs, or bull calves to steers

23 ! Shesrin -+ subscribed do_stock Cempqles de\felepmenl, intake, growth and reproduction of all animals

- = subscribed draft clozed= Assigns animals to paddocks

24 = subscribed dryoff group= | number= Ends lactation in cows that have already had their calves weaned

25 each 15 I = subscribed init_step

2e stock.g * subscribed join group= | mate_to=, mate_dapz= Commences mating of a particular group of animals

o = subscribed move group= , paddock= Changes the paddock to which an animal group iz assigned

= = subscribed prioritise group=, value= Sets the 'prionity’ of an animal group for later uze in a draft event

28 ! S=11 -3 =¥ subscribed gell group= . number= Removes animalz from the simulation

25 each 20 0 —* subscribed sell_tagtag= ., number= Removes animals from the simulation Y]

64 | AusFarm training manual

8.1.2 Matching braces

To assist with formatting the Manager script correctly the editor shows clearly the
matching braces in the script. When the cursor is placed on a [, {, or (type of braces the
corresponding one is also highlighted. As shown in the figure below.

== 2R

28 ! 5el1l cast for age animals A
25 each 20 Dec

30 {

31 group count = stock.no groups

32 for g = 1 to group count

33 stock.split group=g , type='age' , wvalue=365 * cfa vears !old animzsls into 2 nsvw g
34

35 for g = 1 to stock.no groups

36 i

37 if agel[g] »= 365 * cfa years

38 stock.sell group—g , number=stock.number[g]

zs [f

40

41

42 ! Supplementary feeding

44 if stock.cond score_all < 1.0

45 supplement.feed supplement='wheat', amount=0.40%stock.number all, paddock='paddockl’
aF

< >

[] Log Manager output to lagfile
[[]Log Set events Dizplay logfilz Test parsing

W

8.1.3 Checking the script

After writing a section of Manager script it is useful to check that it is written in a well-
formed manner. At the bottom of the Manager Script tab is a Test parsing button that
can be used to start a syntax check of the script. This option will run some initial tests
and alert you to any obvious problems before doing a run of the simulation. This option
is highlighted in the figure above.

8.1.4 Bookmarks

To set bookmarks in the script there is a keyboard combination that performs this task.
To set a bookmark use the key combination, CTRL + Shift + 1. When a bookmark is set
you will see a small number icon in the left-hand gutter of the editor. To unset the
bookmark, ensure the cursor is on the line of the bookmark and use the same key
combination. You can have up to nine numbered bookmarks on each Manager editor.
Just use the CTRL + Shift + number combination for any extra bookmark.

Once a bookmark has been set in a script, it is easy to go to that line at any time using
the key combination CTRL + number.

AusFarm Tutorial | 65

Bookmarks are shown in the following figure.

define real stocking rate = 10.0 ! w
define real cfa_ years = 5.0

Tt

jes

eplacem

nt
T

=3

¢ define real no to buy
7 define real group count
1] define integer o
9
10
11

each 1 Jan
{

1z for g = 1 to stock.no_groups

13 stock.sell group=g, number=0.25*stock.number[g]

14

15 set g = stock.no groups + 1

1& set no to buy = stocking rate * paddockl.area - stock.number all

17 stock.buy genotype='Small Merino', number=nc_to_buy, sex='wethers', ag
2 stc\c]-:.ltag group=g, valus=g+l

14 atnok . move oronn=a. naddock="naddockl !

8.1.5 Reformatting Management Scripts

Manager scripts can often get untidy and loss
of indentation can make them difficult to
read. An option to reformat the script based
on some rules is available when you right
click on the script editor. When the script is
reformatted, the curly braces will appear on
their own lines. Indentation will be adjusted
with indents of three characters per indent.
Comments will not be adjusted unless they
are on the end of a line.

A selected section of script can also be
reformatted.

8.1.6 Inspecting the Management script

21
268
269
=]
271
272
273

T

274

278
276
277
278
279
28968
2581
282
283
284
285
286

Err)

7 !

Lry

Map rota

£
{

£
i

ign systems

or padd 1 to no_paddocks

set padd system[padd]

set paddock has_translators|[padd]

Find...
t paddock ar{ Eilanais
or rot_syster
Replace...
=set paddoc] Cut
Cu
for padd = -
{ Copy
if padd) Paste
{
set | Add code block
Print...

Reformat script
for padd = T to mo_paddoc

'
T

A

Ctrl+F
F3

Ctrl+X

Ctrl+C

Ctrl+V

Eem

gnt + 1

While the simulation is running it is possible to log many of the functions performed by

the Manager. By ticking the two check boxes at the bottom of the Manager Script tab
and providing a filename for the log, a list of management details will be saved to file.
This is extremely useful for checking that the management of the simulation is working

as expected.

Log Manager output to logfile |'\\Vmwale-hnst\5hared Foldersh\DocumentshauzFarmnmanager.log

Log Set events Display logfile

Below is an example of the log file that is generated. It is a tab seperated text file. The
leftmost value is the line number from the script followed by the date of the timestep

66 | AusFarm training manual

Teszt parsing

that it was executed. The statement is then shown with the current values for any
variable and parameters used on that line.

15
16
17

18
19
26
31
33
13
15
16
17

18
19
26
31
33
33
13
13
15
16
17

18
19

45

01-Jan-1970
01-Jan-1970

01-Jan-1970
age= 12.0

01-Jan-1970
01-Jan-1970
15-Dec-1970
20-Dec-1970
20-Dec-1970
01-Jan-1971
01-Jan-1971
01-Jan-1971

01-Jan-1971
age= 12.0

01-Jan-1971
01-Jan-1971
15-Dec-1971
20-Dec-1971
20-Dec-1971
20-Dec-1971
01-Jan-1972
01-Jan-1972
01-Jan-1972
01-Jan-1972

01-Jan-1972
age= 12.0

01-Jan-1972
01-Jan-1972

19-Aug-1972
paddockl

set g = 1

set no_to buy = 500.0
stock.buy genotype= small merino
weight=45.0

stock.tag group= 1 value= 2
stock.move group= 1 paddock=
stock.shear

set group_count = 1
stock.split group= 1 type= age
stock.sell group= 1 number=121.5
set g = 2

set no_to_ buy = 136.0
stock.buy genotype= small merino
weight=45.0

stock.tag group= 2 value= 3
stock.move group= 2 paddock=
stock.shear

set group_count = 2
stock.split group= 1 type= age
stock.split group= 2 type= age
stock.sell group= 1 number= 90.25
stock.sell group= 2 number= 33.25
set g = 3

set no_to buy = 129.0
stock.buy genotype= small merino
weight=45.0

stock.tag group= 3 value= 4
stock.move group= 3 paddock=
supplement. feed supplement= wheat

number= 500.0 sex= wethers

paddockl

value= 1825.0

number= 136.0 sex= wethers

paddockl

value= 1825.0

value= 1825.0

number= 129.0 sex= wethers

paddockl

amount=198.0 paddock=

AusFarm Tutorial | 67

9. Introduction to Livestock Management and
the Stock component

Livestock are supported in AusFarm using a Stock component. Here are some of the
features of the AusFarm Stock component.

e One Stock component contains all the animal groups in the simulation. The
component manages the lifecycle of the animal cohorts that can be located on
various paddocks in the simulation.

e Each animal group has its own status at any point in the simulation.

e The animal groups can be located on any number of paddocks in the simulation.
They can be moved when required to do so.

e Ananimal group may include a range of ages.

For a more complete summary of livestock management in AusFarm see the AusFarm
User Notes #2 document.

9.1 Stock component

Usually a single STOCK module is added to an AusFarm simulation at the top level in the
module hierarchy.

In a grazing system there may be a variety of different classes of livestock. Animals may
be of different genotypes (including both sheep and cattle); may be males, females or
castrates; are likely to have a range of different ages; and females may be pregnant
and/or lactating. The set of classes of livestock can change over time as animals enter or
leave the system, are mated, give birth or are weaned. Further, animals that are
otherwise similar may be placed in different paddocks, where their growth rates may
differ.

Below is a representation of some animal groups managed by a Stock component.

68 | AusFarm training manual

Main Flock or Herd

Index 1 2 3 4 5
Number of animals 2000 160 40 1500 300
Genotype Merino BL x Merino BL x Merino BL x Merino BL x Merino
Sex Wethers Ewes Ewes Ewes Ewes
Age 1.4 years 4 4 years 1.4 years 4.4 years 1.4 years
Base Weight 53.5kg 51.4kg 47 4kg 48.6 kg 47 .2kyg
Fleece Weight 2.23kg 2.06 kg 1.78 kg 2.04kg 1.74kyg
Number of offspring 1 1 1 1
Weight of foetus 2.7kg 2.3kg

Paddock “paddock_5" “paddock_1" “paddock_6" “paddock_1" “paddock_6"
Tag Value 2 1 1 1 1
Priority Score 3 2 1 2 1
Unweaned Offspring | |
Number 1500 300
Genotype (BL x M) x Dorset (BL x M) x Dorset
Sex Mixed Lambs Mixed Lambs
Age 10 days 10 days
Base Weight 5.2kg 4.7kg
Fleece Weight 0.32kg 0.30kg

Above: The list of animal groups at a point in time during a hypothetical simulation
containing a Stock module. Group 1 is distinct from the others because it has a different

genotype and sex. Groups 2 and 3 are distinct because they are in different age classes

(yearling vs mature). Groups 2 and 4 are distinct because they are in different
reproductive states (pregnant vs lactating). Note how the unweaned lambs are

associated with their mothers.

Index

e Each animal group is assigned a unique index
e The index for a group of animals can change — using the split event

Tag value

e Use the tag event to assign a value

e Used to manage distinct groups of animals together
e Assists in collecting summary information

Priority score

e Used to control the movement of animals when using the draft event

Typical Livestock management operations

Policy Enterprise Type
Stocking rate and replacement All stock enterprises
Shearing Sheep

Reproductive management

Cowes and sheep

Sales of young stock

Coves and sheep

Culling old stock

All stock enterprises

Supplementary feeding

All stock enterprises

Grazing management

Multi-paddock systems

AusFarm Tutorial | 69

10. Simulation Analyses

When the objective of a simulation study requires that many related runs be executed,
and a “base case” simulation has been configured and tested, then the analysis facility in
AusFarm is useful.

The central idea is that one or more of the modules in an AusFarm simulation can be
defined to be factors. Each factor module has one or more sets of initialization data
(known as factor levels, on analogy with field experiments). When a simulation is run as
an analysis, every possible combination of factor level is used to automatically construct
and execute a simulation.

The user can also specify one or more report templates. Each report template describes
a set of charts and tables that compare the results of the simulations in an analysis.
When the analysis has been run, AusFarm uses the simulation results to generate an
HTML document containing these charts and tables.

Note: For modules that are systems, it is possible to define the entire system as the
factor. For example, a paddock module is a system.

10.1 Setting up analyses

For example, to test the effect of systematically changing the characteristics of the
Paddock module in a single-paddock system, open the example simulation in
example.dfs.

70 | AusFarm training manual

®» Right-click on the Paddock
module in the configuration

tree and select the Add System | Twe: Historcs| Start:
Factor option from the pop-up Erd:

H Ywrnware-host\Shared Folders\Documents\AusFarm'\ Example.afs

menu. Models Initizlize Motes Logging Erors
“ - Example - High Fertility W ariable
----- M manager - Low fertility it Sllacatar
..... o output E:----real
..... e weather E\----real alrea
& paddock” £0pe
ﬂ nele Collapse sub items Ctrl+Left
4] pasty Expand sub items Ctrl+Right
PR stock
..... ® suppleme Initialise Ctrl+|
(- Sequence Ctrl+N
o= Add Factor Ctrl+Alt+F
T Add System Factor . Ctrl+Alt+S
e Cut Ctrl+X
Ly Copy Ctrl+C
Paste
7% Delete Ctrl+Del
=[1 Rename

Diff this component...

Help l

Factor levels contain initialization data. This data can be modified by using the initialization
dialogs or via data entry interface in the Initialise tab, just as for modules in the configuration
tree.
® Change the name of the new factor to Mid fertility and check that the fertility property
of the pasture module has a value of 0.75 as shown.

@ \wmware-host!\Shared Folders\Decumentsh AusFarm'\Example.afs
Type: | Histarical Start: [1.Jan 1970 =p After processing open
End: |31 Dec 1320 =t | Report w
todels Initizlize Mates Logging Ermors
v @ Example & High fertility arable Walue
----- M manager g Lo fertility 8BE param_file P
----- o output V@ Mid_fertility B Phalaris
----- e weather i -ﬁ water .
Y ~8BE rutrients <hones
v &3 paddock] “enfe pasture e
i ﬂ o - Feal fertility 0.75
“sfs pasture - layers
-k stack &8l max_rtdep 700.0
----- ™ szupplement -teal lagged day t -955.9
-teal phenalogy 3.05
vzl o-..-. Tau nn

® To add an extra factor levels, either select the Add System Factor option again or right-
click on one of the factor levels and select Clone from the pop-up menu.

Once a simulation contains one or more factor modules, the Run Analysis button appears in
the top pane of the Simulation window. Clicking the Run button executes the base simulation,

AusFarm Tutorial | 71

while clicking the Run Analysis button will set up and execute one simulation for each
combination of factor levels:

@ \\wmware-host\Shared Folders\Documents\AusFarm\Example.afs EI@
Tupe: | Historical Start - & | After processing apen
End: =% | |Repart ~
Madel: Iritislise Notes Logging Ermors
~ @ Example & High lerilty Wariable [value Type | Unit [detaut [min [max ||
i M manager] Midﬁfarlihly o[t llocatar 1 integerd 1 1 3
oo s Low fertity 1l e 500 double ha 10 oo
"' @ naddack -edl slope 42 double deg 0o 1] 450
- supplement
< >

B Click on the simulation node

. H Wemware-host\Shared Folders\Documentst\ AusFarm\Example.afs
(Example) in the model tree and you

. Type : | Histarical Start :
will be able to see the complete Erd-
structure of the Analysis. : _

Models Analysiz Notez Logging Erors
v @ Ezample w o Analysis
----- M manager %% Report
----- o output v &5 paddock
----- e weather -5 High fertiliby
v €@ paddock] - Mid_fertility
ﬁ viatar - Low fertility
+1¢ pasture
- stock

----- W zupplement

®» Run the analysis.

If the Report has been selected for output, then the report will be displayed at the
completion on the run.

® Close the report if it is open then open the Results 8 Simulation Results

window. W ariahles available for report Y aria

The tree of results now has an extra level; within the E- 9 Example Ging
. B @ High fertility
simulation, there is a sub-tree for each of the simulation BB oupu
runs that was run in the Analysis, and within each run the B @ Lowferiiy
same set of output variables (with different values) is i ﬁ_d?”tt'?lf:‘
. . - 1 Tertty

displayed for selection. B ¥ output 5

B Select the simulation node (Example) at the root of the model configuration tree.
The Analysis tab will appear, showing the structure of the entire analysis (i.e. all
factors and their levels).

72 | AusFarm training manual

®» Double-click on the existing Report object. The Report Designer dialog will appear.

(See the Help file for details on how to set up charts and tables in reports).

® Right-click on the Analysis item in the Analysis tab. From here you can add another

report item to the Analysis if required.

Analysiz Motes Logging Emors

v - Analysis |
AL Rem Initialise Ctrl+
& padc Sequence Ctrl+M
=
st Clone...
“ Delete
Rename
Add report
Copy I}
Paste
Diff this component...
Show report

10.2 Using Generic modules as factors

Often, the factor in a simulation analysis is used control a management activity and is
therefore expressed in a management script. In these cases, it can be inefficient to make
the Manager module into a factor, especially if more than one factor in the simulation

experiment is implemented via management rules. In these cases, an elegant solution is

as follows:

1. Add a Generic module to the simulation’s configuration;

2. Define a variable within the Generic module and provide an initial value for it;

3. Use this variable in the Manager script, either directly in events (e.g. a stocking rate)
or in a conditional statement or statements that turn rules “on” or “off”;

4. Convert the Generic module into a factor in the analysis.

When using a Generic module for this purpose, it is important to refer to the factor

variable with an unqualified name in the manager script, e.g. stock rate instead of

sr factor.stock rate.

Another way to use the Generic component
is as a system component. It is easy then to
use this system structure as a factor value in
an Analysis. In the example below the
Manager script can be dependent on the
location.

Models

Initialize Logaging

a J Beetle Simulation

Pl oukput
T} DymexBestle
4 .—,ﬁ Lacation

4 -8 Coolaman
Y bk anager
Fev Weather
4 -2) Benidale

M Manager
o v weather

AusFarm Tutorial | 73

Configuring an Analysis using Generic components

As an example of how to test more than one stocking rate.
®» Modify a Management script to use a variable sourced from another component.
The variable used here is SR. Choose any name that applies to the quantity you

are defining. This variable is then added to the Generic module state variables in
the next step.

set no_to buy = SR * paddockl.area - stock.numbker all

®» Add a Generic component to the simulation, name it StockingRate and add a
state variable to it.

b odelz W Initialise Generic

Waniables Equations

“ - Example
----- M manager e Name [5R |
""" - output Uriits | |
i m weather [State variable
w &3 paddockl Iriial Y alue
ﬁ water 10
,‘?L. pasture o
R stock
----- W supplement +
----- ol StockingP ate ¥
Add Delete

It is now possible to replicate this component in an Analysis and give it differing values.

® Right click on the

Stocki ngRate generic ‘@ “wmware-host\Shared Folders\Documents\AusFarm’

component and choose Tope: | Historical Start; [1Jan 1
. . End: |31D
Add Factor. Do this again. [37Dec
Models Initialize pates Loggir
~ % Exarple -l SR_10
..... M manager -8 SR_20
® Edit the namesofthe || - = output

components in the
Analysis to reflect the
internal values. - stock

..... supplement
----- Sl StockingFiate

74 | AusFarm training manual

M Initialise Generic

® Edit one of the factor :
. Vanables Equations
values. This factor value
. . 8 SR Mame |SF| |
is 20 animals per hectare.
Units | |
State variable
Initial ' alue
20
L)
4
¥
Add [Delete

After running the Analysis the report will show the effects of increasing the stocking rate.

Animal weights for all treatments.
Long term average animal weights [1 Jan - 31 Dec, 1970-1980]

56
—
—— \\
50 _,_/f =
— e
2 5 \ / "
— T _,.»""-- I"._
40 S T
1 Feb 1 Apr 1 Jun 1 Aug 10ct 1 Dec

I 1: stock.weight_all 2: stock.weight_all

Treatment StockingRate
1 SE_10
2 SE_20

AusFarm Tutorial | 75

11. Configuring Reports

Reports are an advanced feature that can take some effort to master. When a well
configured report is used with a simulation it can add significant value to the process.
Reports can show the results from an individual simulation as well as an Analysis of
almost any dimension.

In AusFarm to generate a report requires the configuration of a report template. The
template is a set of instructions that determine the layout, the variables to use and how
to aggregate them. Reports can contain charts, tables, headings, text sections and grid
layouts of these items. To design a report by creating a template AusFarm includes an
editing window as shown below.

Report Designer

Report name: |Report | Descr. |Examp|e report |
Section Weather information
hd " Report Heading |L0ng term weather |
v% :EFEE?; treatment Sub heading: |Average manthly temperatures and rainfall over the simulation period |
i Lol Pasture
_____ M Intake Transform: Long Term Average e
""" b Animal weights Interval: Months ~
Lt Fleece weight Period type - _
4 ® Dates From|13an |[g8 to [31Dec ||
O One Event
¥ () Two Events
Variables Select... |Remove Clear [+] Use aggregation captions [Show horizontal grid lines Chart width | Mormal ~
[Ishow these variables over all treatments IJse 0 as Y origin [show vertical grid lines
Mame Title Description Display Style Colour Agareaq. Units Axis +
i weather.rain i weather.rain rain fes Bar .dBIue Sum mm Right +
weather maxt weather maxt maxt Yes Line .dMaroon Average oC Lefi
weather. mint weather.mint mint Yes Line . diawvy Average oC Lefi i:‘
f
< >
Cancel Help
Report Designer dialog
Report sections
Chart Compact view of many points. Line, bar, area.
Table High precision view with data in column and row format.
Text Detailed description that can include HTML markup script.
Summary Table Compact comparison of treatments in table form.
Loop Groups of treatment results that organises treatment
comparison

76 | AusFarm training manual

When designing a report, it can be efficient to copy existing sections and adapt them.
Sections can be copied from within a report design or from another one. You will need
to make some decisions such as:

Decide which variables convey the information you need

Choose the most appropriate transformation of the time course of the variables
Choose an aggregation interval and statistics

Format the values: chart type, series colours, decimal places and units

11.1 Report Variables

An AusFarm simulation can contain several reports. You can edit each one
independently, adding as many sections such as tables, charts, and grid layouts as you
require. See the Help file for more details.

In the bottom table of the Report Designer is a list of the variables that will be used in
the selected report section. Use the Select, Remove, and Clear buttons to manipulate
the list of variables in each report section. You can order the variables using the red up

and down arrows

Calculated expressions

By using the ¥ button you can add a calculated expression as a column in your table or
chart.

Yariables [Select...] [Remwe] [Clear]
Mame |Title |Descriptinn |Displa§.-' |.ﬁ.ggreg. |DE|:F‘| |Llnits |
income_ha Tokal income Total incomejfha Mo Sum] $/ha
expense_ha Tokal expenses Total expensefha Mo Surm] $/ha
iincome_ha - expense_ha {Gross Margin Annual G Ves none z $/ha

f
£ >

In the name column for a calculated expression, enter a mathematical expression. It may
include the names of other columns. In this case: income_ha - expense_ha. You can
choose whether you want to display the source columns.

Note: You cannot do any aggregation on the calculated column.

AusFarm Tutorial | 77

12. Using Repositories

Repositories are used to store module data and management scripts that are used
regularly in simulations.

Items of a similar type can be grouped into folders within a repository. Repository items
are associated with a component. Items associated with the Manager component are
treated somewhat differently to other items.

Examples of items that may be stored in a repository are:

1. Commonly used sets of management rules
2. An archive of project work for later use
3. A'library" of commonly used soil descriptions.

12.1 Getting module data from a repository

B Close the Results window.

® Open the Repository clicking the library button il on the main toolbar.

A Repository window like this will open on the bottom of the main window:

s T Standard Repository -
© b Folder
4 - Custom
) 2009
4 Other
-3 pasture
#3 paddockl
-3 wheat
3 wheat -

m

The Repository is divided into two sections. The Custom section is for the user to add to
or delete from while the Standard section contains items that cannot be changed.

Items from the Repository can be dragged into simulations using the mouse.

When you need to add items to the Repository, items can be dragged from simulations
and dropped into folders.

Before you exit AusFarm you will be asked if you want to save any changes you have
made to the Repository.

® To save changes or add folders, just right click the mouse on an item in the Custom
section.

78 | AusFarm training manual

—
=] a -T1 Standard Repositary -

% |)

T AT

Open file...

Save I} Ctrl+5

Cut Ctrl+ X

Copy Ctrl+C

Paste Ctrl+V

Rename

Delete Ctrl+Del

MNew Folder

MNew Code fragment

You can also have other custom Repository files. If you right click on the Custom library,
you can open another file. If you want to create another custom library file, choose the
Open file... option and type in a new name in the Open file dialog. You will then be
asked if you want to create a new file.

Items from the Standard library section can be copied into the Custom section by just
dragging with the mouse.

12.2 Copying module data to a repository

® Drag the icon for the Weather module onto a folder in the repository. A new
repository item will appear.

B Select the Weather repository item. The initial values for the module will appear in
the right-hand pane of the repository. These values can be edited in the same way as
in the Initialise tab of a simulation window.

12.3 Copying module data from simulation to simulation

Add a second, identical paddock to the simulation:

Right-click on paddock1l in the Models tab.

Select the Copy option from the pop-up menu that appears.

Right-click on the simulation icon in the Models tab.

Select the Paste option from the pop-up menu that appears. A copy of the paddock
system will appear.

Rename the new paddock as paddock2.

¥ +33 3

The same process can be followed to copy module data between two different
simulation windows. Modules may also be dragged and dropped rather than copied
and pasted.

AusFarm Tutorial | 79

13. Using APSoil soil data

It is possible to copy the soil descriptions from APSoil directly into AusFarm. This is done
firstly by copying the soil chosen in APSoil to the clipboard. Then with a paddock
component in the model tree in AusFarm; right click on the paddock and choose Paste
APSOIL.

Models Initilize | Notes | Logging
‘J sim Yariable | alue

2 Manager o~ published e...

@ E‘:thI:;ct-cl B driver_conn...
Initialise Ctrl+I
Sequence Ctrl+M
Add Factor Ctrl+Alt+F
Add System Factor Ctrl+Alt+5
Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Paste APSOIL %
Delete Ctrl+Del
Rename
Diff this component...
Help

i

Once the soil is pasted on the paddock, new components will be added to the paddock
system. The nitrogen model then needs to be initialised for initial nitrogen values. The
soiln initial values are shown below.

@ Untitled-2 e)
Twpe: | Hiztarical Start: 1.Jan 1945 After processing open

End: 1.Jan 2001
todels m

‘J i Yariable W alue
Manager
output Caomment Black Vertosol-Mywybilla (Bongeen No0OO01)
4 &5 Paddack zoiltype Clay
a-% water
; _” . root_cn 40
it model
4-% curfacenm root_wt 1000
LB model .
Lo soil_ch 12
-5 nitrogen
g model enr_a_coeff 7.4
enr_b_coeff 0.2

profile_reduction of£

ot 0.953846153846154 0.9538461535846154 0.961538461538461 0.1
ph g 8B8BE8EEESE

fhicri 0.04 0.02 0.02 0.02 0.01 0.01 0.01

firert 0.4 0.6 0.21111

no3ppm 0000000

nhdppm oo000000

rocks

80 | AusFarm training manual

The initial values for the cropping modules will need to be set manually as shown below.

ﬂ C\Users\herl 23\vbox_share\DAFF_BCG\BCG Mallee farm (19.1.15)_NH.afs

Type: | Histarical Start: 1 Jan 1920 E After proc
End: 31 Dec 1382 MNathing
tdodels Initislize | Nates | Logging

4@ i ' WVariable WValue

canstants
eelems = uptake source Sandy clay loam

im
]
]
M cropping] 0.140 0.210 0.230 0.280 0.
M livestack
kl
]
]
]

[
(2]
(=]

o .070 0.070 0.070 0.050 0.050
grazing

1}
resets_etc wf 1.000 1.000 1.000 1.000 1.000
SUMMarnes a
Output
' leather Modifuk L
temt_01
text_02
text_03
- Supplement
ol farm
4 &8 zandy_loamndl
L 4P water
e & miadel
%2 nitrogen
)

1
ec 0.200 0.500 0Q.700 0.700

[

a-
§ el model

a-% wheat

: ‘u&n model

AusFarm Tutorial | 81

As Australia’s national science agency and
innovation catalyst, CSIRO is solving the
greatest challenges through innovative
science and technology.

CSIRO. Unlocking a better future for everyone.

Contact us

1300 363 400

+61 39545 2176
csiroenquiries@csiro.au
WWW.CSiro.au

For further information

CSIRO Agriculture and Food

Neville Herrmann

+61 2 6246 5290
neville.herrmann@csiro.au
https://www.csiro.au/en/Research/AF

For further information

CSIRO

Andrew Moore

+61 2 6246 5298
andrew.moore@csiro.au

https://www.csiro.au/en/Research/AF

