()

CSIRO

Version: 9 September 2005

WWW.CSiro.au




Developing Components for the Common Modelling Protocol

Contents
1. INtrOAUCHION . —————————— 2
2. Simulations, models and SUD-MOEIS.........c..cciiiiiiiiiieiii e e e enaaa e 3
3. A short introduction to the Common Modelling Protocol...........cccccoimiiiicccccmcmrennisscccsseeesee e 5
3.1. Components and MOAUIES ...........cccierieriieiiiieieeit ettt ere et e e staesraesaesssessseesbeesseeseennns 5
TR o (0] 0153 5 1< SRR 5
3.3. Events and event handlers ..........cooioiiiiiiiiiii e 5
3.4. Systems and SIMUIALIONS .......c.eevviirieriierieiie et ettt eese e e sreereebeesseessaessaessaesssessseessessseesseennns 6
3.5, IMIESSAEES .eeeuvveerureeeiieeaieeeeiteeetteetteesuteeetteeauteesntee s saeesabeeanba e e nteeeabteeeabeeentee e nteeenbeeentteeanteeeneeennres 6
3.6. Identifiers for entities in @ SIMULALION ......oeeeiiireieiieiieieie et 6
3.7. Defining data types and units: DDML ..........cccoooiiiiierienieniecieeeee et 7
3.8. Simulation documents: SDIML..........ccccooiiiiiiiiiieiieiteeeree ettt sree s ae e snreesbe e seennes 7
4. Designing a component: step by Step.......cccccimiiiii e ————— 8
4.1. Purpose and DOUNAATICS. ........cceeiuieiiiiiiiiiieii ettt e teeetre e eveebe e teestseseaeesveesbeeveesseessaessnessneens 8
4.2. Identifying the submodel interface - PrOPEIties .....cccvevveiiieiieirieiiecieciiecre et seestreeene e 9
4.3. Identifying the component interface - EVENLS.........cccvecvierierierieireeieeieesieeseeseesreeveeseeeeeens 10
4.4. Component description dOCUIMENTS ........cc.eeiieiieiieiiieereeeieesteestesereereereesteesteesrreesveesveeseesssenens 10
5. Implementation BasiCs ... 13
5.1, REQUITEA DINATIES ....ccvviieviiiieiieitieciieeiie ettt et e et e seveeabeebeeteesteestsesabeesbeesbeesseessessseesseesseenses 13
5.2. Component-building APIL: the TFarmWiseInstance Class ............cccoceeeeeveesvenvenceeneesreenseennens 13
5.3. Event processing using the state Mmachine ............ccoccoioiiiiiiiiiiiiiie e 15
6. Implementing a component: step by SteP .....ccoeiiiiiicciii i ———— 17
6.1. DefiniNg the PrOPEIIES.....ccvviiiieiieiieeie ettt et et e eer e et e eteesteesteestaeeabeesbeesbeesbeessseseseesseerseesses 17
6.2. Defining the event handlers............ccovcuiiriiecieniieeece e sereenseennees 18
6.3, INItIaliSING PIOPEITIES ...veieeiieiiieeiiireitieeite et e steeesteeebeeetteessbeeeseeessseessseeessseessseeessesesssesssssennes 18
6.4. Acquiring values for driving PrOPEITIES ........cccveieiiveevierieireeiteeseeereereereesteesreesaseseseesseeseessees 19
6.5. Implementing model logic — event handIers ...........c.ccevcvieriierieniienie e 19
6.6. Providing values fOr OWNed PrOPETLICS..........ccververiiriieirierieerieeseeseresresreereesseesseesssesnseenseensens 20
6.7. PUDLISNING @VENLS ....ccviiiiiiiiiiiiieiiiecie ettt ettt et et e st etb e et e e steesteestsesabeeabeesbeesssessessseesseesseenses 21
6.8. HaNAIING ©ITOTS.......eeiiiiiieiieieerieesteete et et et et e st e sebeesseesteesaesseessaesssessseasseesseesssesssesssennseenses 21
6.9. Discovering the CUITENt tiME SEEP.......c.eevveeriieriierierierreereeseesieeseesresreesseesseesseesseesssessseeseensees 22
A - Vo 2= 1 o= o IR e = 23
7.1. The coNNECtion SCREIME ........ccuiiuiiieiiieeiee ettt ettt e st e et e eeeseeneenseeneenes 23
7.2. Querying the simulation fOr itS STTUCTUIE. .......cuiiuiiiiiiiierieie ettt et et se e eereere v 23
7.3. Other TFarmwiselnstance methods that generate MesSSaZES........cvevveerveerveereereereerreereereeeens 23
8. Further documentation ... ————————— 24
8.1. Common Modelling Protocol SpeCifiCation ...........cccccueeieeiiieiiiiiieniieciecre e see e eene e 24
8.2. Typed Value SPeCIfICAtION. ......ccuiiiiiiiiiciietieieeteestee st ette e e vt ste e taesereeabeeaveesbeesbeesraesrneesnaens 24
G T = 1<) 0 1 (<RSPPI 24



1. Introduction

This document is designed to assist builders of components that execute within the CSIRO Common
Modelling Protocol (CMP). Topic areas covered are:

o an introduction to simulations;

« an introduction to CMP components;

« adescription of the process by which components should be designed and implemented; and

« information about the infrastructure code provided by CPI to implement components.

Design of a component is properly the role of a “scientist”; the most important design questions relate
to the way in which the various quantities and equations in a model should be structured.
Implementation of a component, on the other hand, is the role of a “progammer”. Even if the same
person carries out both design and implementation, it is useful to distinguish the two roles.

This document is based on the CMP implementation written by CSIRO Plant Industry (CPI). While
the software development processes and examples described here are specific to the CPI
implementation of the protocol, the “science” part of the component-building process should apply
regardless of which implementation of the CMP is being used.



2. Simulations, models and sub-models

The purpose of any CMP component is to implement a sub-model that can be coupled with other sub-
models to form a dynamic model. In order to develop components efficiently, a component designer
must understand the concepts of model, quantity, event and simulation.

A simulation is a computation of a dynamic model between given start and end times, i.e. it is an
integration over time.

A dynamic model is defined by a set of equations. The equations of a dynamic model may fall
into natural groupings known as sub-models. Some of these sub-models may have equations and
quantities of identical form, i.e. they belong to the same sub-model class. The dynamic model as a
whole can therefore be viewed as a collection of instances of various sub-model classes.

A sub-model is composed of a set of quantities, a set of rate equations, and a set of events.

All quantities can be expressed as real numbers, integers, or Boolean values. (In the modelling
protocol, these quantities can be organized into arrays and structures.)

Real-valued quantities have dimension and units; the units must conform to the dimension. When

designing a sub-model, it is useful to distinguish the following kinds of quantities:

(a) Constants are quantities that are (i) invariant in time and (ii) have the same value in all
instances of a sub-model within a model and all simulations of a model. For example,
Avogadro’s number is a constant.

(b) Parameters are quantities that are invariant through the time course of a simulation, but may
take different values between different instances of a sub-model within a model or between
simulations of a model. For example, the radiation use efficiency of a plant species under
reference conditions is treated as a parameter in many plant growth models.

(¢) State variables are quantities that may vary in time as the simulation is computed. The value
of a state variable must be stored in order to compute the dynamics of the sub-model. An
example is the water content of the surface 100mm of soil in a moisture budget. The initial
value of each state variable must be specified in order for the simulation to be computed.
There is a one-to-one correspondence between state variables and the rate equations of the
sub-model. In principle, there should be no redundancy in the state variables.

(d) Summary variables may also vary in time, but their value at any given time may be
determined from the current values of the state and driving variables. Summary variables may
be used to provide output from the simulation; to provide driving variables for other sub-
models; or as notational conveniences in the specification of the sub-model's rate equations
(in which case they may be referred to as "intermediate" variables). For example, in a model
where the masses of different plant parts are followed the total shoot mass of the population is
a summary variable.

(e) Driving variables are quantities which are stored externally to a given sub-model but which
must be known in order to compute the dynamics of the sub-model. They may (and usually
do) vary in time. For example, minimum daily temperature and maximum daily temperature
may be driving variables of a plant growth model.

Each real-valued state variable has a rate equation associated with it. The rate equation is an
ordinary differential equation that gives the rate of change of that state variable over time. The
right-hand side of each rate equation must be composed only of constants, parameters, state
variables, summary variables and driving variables belonging to the sub-model.

Each submodel has zero or more events' associated with it. An event, in this sense, is
- a set of equations defining an instantaneous change in one or more state variables; and

N.B. The term "event" is used in another sense within the modelling protocol. Model events will be coded
as protocol event handlers, but so will other model calculations. Unfortunately no good alternative term
exists.



- a "trigger": a logical relation that, if satisfied at any time, causes the change(s) in state variables.
Each event has zero or more quantities, known as event parameters, that may be used in
specifying the right hand sides of the equations and the trigger along with constants, parameters,
state variables, summary variables and driving variables belonging to the sub-model.

A simulation is therefore completely defined by:

- the model, i.c. the set of sub-models it contains;

- the start and end times for the computation;

- the values of the state variables and event parameters of each sub-model at the start time;
- the time course of the model's driving variables.



3. A short introduction to the Common Modelling Protocol
3.1. Components and modules

Simulations that are computed within the CMP are constructed from components. Most components
embody a sub-model.” An instance of a component within a simulation is known as a module. There
may be many modules of the same component within a single simulation; for example, in a simulation
with several paddocks there may be a water balance module for each paddock. Each module has a
case-insensitive name (e.g. water b in Figure 3.1).

3.2. Properties

Properties correspond to the quantities in a dynamic model. Every property forms part of a
component. Each property is defined by a name; a type; and a value. Properties are referred to by their
name: where necessary, the property name is qualified by the name of the module to which it belongs.

The type of a property determines the set of values it may take and the units of those values, where
applicable. The type must be either one of a set of primitive types (usually real, integer, Boolean or
text) or else an array or record structure ultimately composed of these primitive data types. The value
must conform to the type. Type information is conveyed using an XML notation called Data
Description Markup Language (DDML), which is described in section 3.7.

For example, in the simulation structure shown in Figure 3.1, paddock 1.area might have units

of ha and a value of 150.0, while paddock 2.area would have the same units but a value of
350.0.

Two different kinds of properties are distinguished. Driving properties correspond to driving
variables. The systems in a simulation work together to ensure that the values of each module’s
driving properties are read from the properties of other components as needed. A request for a driving
property may result in zero, one, or more than one values being returned from different components,
depending on the structure of the simulation.

All other properties (i.e. those that are stored by the component) are known as owned properties.

Some of the owned properties (usually those corresponding to state variables) have to be provided in
order to define the starting state of a simulation: these are called initialisation properties.

3.3. Events and event handlers

Events in the common modelling protocol are used to signal the occurrence of activities (i.e.
computations) and to pass instructions between components. Protocol “events” are therefore used to
drive the computation of both continuous processes and logical “events” (discontinuous processes).
Every event has a name; it may also have a type and parameter data that conform to the type. When an

Examples of valid units for real variables:

g base (S.I.) unit

hPa scaled unit

MJ/m~2/d ratio with two terms in the denominator

/s no numerator

kg~0.75 or kg~ .75

m~1/3 but not m~1/2, which is grammatically correct but should be given asm”0. 5
g.m/s"2 but not m/s”2.g as numerator terms must precede denominator terms

For more detail about how to specify units, see section 6.2 of the full CMP specification.

Other components carry out utility tasks such as controlling the order of computations within each time
step, the acquisition of the values of driving variables (for example weather data) or the storage of
simulation results for later analysis. This document is primarily intended for developers of components that
implement sub-models.



event is passed to a component, an event handler is executed.
3.4. Systems and simulations

A system is a component that groups related components within a simulation. In addition to the usual
attributes of components, a system has zero or more components within it. The components in a
simulation are therefore organized into a tree structure. At the root of the tree is the simulation system.

3.5. Messages

Messages are the means by which information and requests are passed between components and
systems as a simulation is computed. Message data are transmitted in a binary format. There is a
defined set of 31 messages. Every message has a common header that contains the message type (as a
numeric index), the component from which it originated and the component to which it is to be sent.
Most of the messages also contain further data, which are laid out in a specified fashion so that any
protocol-compliant component can read them. A component that receives a message may execute
some of its own internal logic (which may result in the component sending further messages); or it
may be required to send particular messages as a mandatory response.

Component builders will not generally have to work with messages directly. A component API
(implemented as a class) takes care of decoding incoming messages and encoding outgoing ones.

3.6. Identifiers for entities in a simulation

Any component, property or event can be uniquely identified within the simulation by its fully-
qualified name. The fully-qualified name is constructed by adding the names of all containing systems
and (where appropriate) components before the name of the entity, delimited with “.”. For example,
in Figure 3.1 the water balance component may have a property called sw; the fully-qualified name of
this property in the water a module would be paddock zl.water a.sw.

In addition to their names, all modules, properties and events within a simulation system have unique
numeric identifiers. Each module is allocated a unique integer identifier during the initialisation of the
simulation. Each property within a module has its own integer identifier, which is usually assigned by
the component builder. The ordered pair [component ID,property ID] therefore uniquely identifies a
property within the simulation. A similar scheme applies to event handlers.

Simulation
g paddock1 > water_a
> pasture_a
> paddock2 » water_b
» pasture_b
> weather

Figure 3.1. Components and svstems in a CMP-compliant simulation.

—6—



3.7. Defining data types and units: DDML

Every property and event parameter has a type and (if a numeric real value) a unit. Within the
protocol, information about types and units is given using Data Description Markup Language
(DDML). DDML is an XML-based format; it is described in section 6 of the protocol specification
document.

No knowledge of DDML is required to create properties that are scalars or arrays of scalars; the
component-building API generates the DDML automatically for these types. For properties that
contain multi-dimensional arrays or records, well-formed DDML descriptions of the type are
required.

Examples of DDML definitions:
<type kind="double" unit="mm"/> Double-precision scalar — note that the unit is given
<type kind="string" array="T"/> Array of text strings
<type> Record containing an integer, a real value and a logical value
<field name="field 1" kind="integer4"/>
<field kind="field 2" kind="double" unit="-"/> Dimensionless value
<field kind="field 3" kind="boolean"/>
</type>
<type array="T"> Array of records....
<element> ... each record has a string and two arrays of numbers
<field name="crop ident" kind="string"/>
<field name="layers" unit="mm" kind="double" array="T"/>
<field name="uptake" unit="mm" kind="double" array="T"/>
</element>"'
</type>

3.8. Simulation documents: SDML

Simulation Description Markup Language (SDML) is used within the protocol to specify the structure
of a simulation and the initial values of the properties in each component. A valid SDML document is
a complete specification of a single simulation. SDML is an XML-based format; it is described in
section 7 of the protocol specification document.

Component developers will not generally need to handle SDML directly. The protocol
implementation parses the simulation structure and creates the necessary modules automatically. The
component-development API parses the initialisation data given in the SDML document and provides
it to the component’s code as TTypedValue objects (see section 5.3).



4. Designing a component: step by step
Adding a new model of biological or physical processes to the protocol typically follows three steps:

1. Define the purpose & hence the “boundaries” of the sub-model. The component designer
needs to answer the following questions:
« What quantities should the sub-model contain?
« What quantities belong in other sub-models?
o What calculations is the sub-model responsible for?

2. Specify the interface of the sub-model. Once a conceptual boundary has been drawn around a
sub-model, it becomes possible to identify the flows of information that must take place as the
sub-model is set up and its equations are computed. This information specifies the interface to the
component. We strongly recommend that the interface be formally specified in a “component
description document”.

3. Implement the sub-model as a component. This process is described in sections 5 and 6.

These three steps perform a translation from a sub-model (a mathematical entity) to a component (a
software entity). The roles required shift accordingly:

o Step 1 should be carried out by the “scientist” (the person responsible for the model equations).

o Step 2 should be carried out jointly by the “scientist” and the “programmer”.

o Step 3 should be carried out by the “programmer”.

In practice, of course, the component development process tends to be iterative; a component’s
interface evolves along with the scientific understanding that its sub-model embodies.

4.1. Purpose and boundaries

This step involves making an assessment of how the new processes relate to one another and to
existing processes that are already modelled within other protocol-compliant components.

When a new sub-model is being added to a suite of existing components, its boundaries will generally
be evident. Where an existing model is being re-implemented within the CMP, however, the
component designer must decide whether to implement the model logic as one or as several
components and where to set the boundaries between the new components.

The following points should be taken into account when delimiting component boundaries:

o  The most important consideration is that equations that are tightly coupled (in the sense of sharing
common quantities) should form part of the same component.

o Where a component is intended to be used in conjunction with other components, their conceptual
boundaries should be aligned: no process should be represented in both components and all
necessary processes must be represented in one of them.

o The component designer should aim to align component boundaries with those of existing
components that perform the same or a similar function. This will facilitate component
interchange.

Delimiting component boundaries: special cases

e Sometimes the question of the sub-model that should represent a given process is a matter of scientific debate, and a
perfect alignment of component boundaries is therefore not feasible. (This usually happens at physical interfaces
such as that between soil and roots.) In this case we suggest that a new component should be implemented so as to
detect its companion components at run-time and to adjust its computations accordingly.

e Components with similar processes can have boundaries that align without being identical; two or more components
may together carry out the functionality of a single alternative component. For example, in crop modelling the
dynamics of dead surface residues are typically considered separately from that of green biomass, and the two sets
of processes are implemented as separate components. In grasslands, however, both green and dead herbage are
sources of animal feed and so it makes more sense to include them in a single component. To preserve alignment of
the boundaries, the interface to the grassland component needs to correspond to that of both a crop and a surface
residue component (except for the elements that communicate between the two).




There is a design tradeoff to be made between having many small components, which will
increase flexibility, and having few large components, which will increase computational
efficiency. Also, designing components that are too small will make it difficult to configure
simulations correctly; designing components that are too large will result in users having to define
unnecessary initial values.

4.2. Identifying the submodel interface - properties

Once the conceptual boundary has been drawn around a sub-model, it becomes possible to identify
the full set of quantities in the model equations. The different kinds of quantities will be handled
differently in the component code:

Constants  Constants will generally be defined inside the model logic code and will not appear in

the component’s interface.

Parameters Values for parameters will need to be provided at startup. The component will require

either an initialisation property for each parameter, or else initialisation properties that
allow the component to locate and read file(s) containing some or all of the

parameters.
State Initial values for state variables will need to be provided at startup. It is good practice
variables to define an initialisation property for each state variable, so that the initial values for

a simulation are recorded in the simulation’s SDML document (see section 3.8). It is
also good practice to make each state variable readable; code will need to be written
to provide its current value to the rest of the simulation upon request.

Summary Summary variables have different uses:
variables e asoutputs;

« as driving properties by other components.
In either case summary variables must be made readable if they are to carry out their

function.
Driving The driving property corresponding to each driving variable must be given a name
variables and type that are the same as (or at least compatible with) those used in the

component(s) that will provide values of the driving variable when simulations are
run.

It is good practice to ensure that all initialisation properties are also readable; this simplifies the
process for creating and restoring checkpoints.

The following points should be taken into account when defining the names and types of properties:

One of the major benefits of the CMP is that it allows interchange of different models for the
same or similar processes. This benefit will only be realised if properties with the same meaning
are given the same definition. Component interface designers should therefore consult the
documentation for related components and use common definitions wherever possible.

Summary properties that are intended for use as outputs should be given a type and units that are
convenient for users.

Summary properties that are to be used as drivers for other components must be given a name and
type that are the same as those used in the receiving component. (The CPI protocol
implementation will carry out some type and unit conversions; see sections 8.4 and 6.2.3 of the
full CMP specification for details.)

Writeable properties
Properties may be defined as being writeable as well as readable. Another component can request that a writeable
property be reset to a different value.

Property resets should be used sparingly, if at all. As a rule, the only context in which they are defensible is when the
period of scientific interest is after the start of the simulation and the resets are used to shift part of the system state to a
desired point. Use of property resets in the regular computations of a component is a sign that its boundaries or events
are badly defined.




4.3. Identifying the component interface - events

In the CMP, all computations within each time step are carried out in response to an event. When
defining the component interface, it is therefore necessary to work out which equations should be
computed together and so to group the model logic into event handlers.

Conceptually speaking, event handlers can be divided into three kinds:

o those which implement one or more rate equations and which should therefore be computed
exactly once in each time step;

« those which implement the equations of an “event” in the sense of section 2, which may be
computed zero or more times in each time step; and

» those that transmit information (for example the amount of a flow of organic matter).

The first kind are referred to as sequenced event handlers, because in the CPI protocol
implementation the events that trigger them are usually generated by a special “sequencer” component
that controls the computation of each time step. We recommend that sequenced event handlers be
considered separately when documenting a component’s interface.

The view within CPI is that information transmission should be carried out by means of property
values, not events. The distinction between using an event to trigger a submodel “event” and using an
event to transmit information is not a sharp one, however; even when an event is intended to trigger a
computation, its parameters convey information to the component that receives it.

While the three kinds of event handlers are logically distinct, they are implemented in the same way
within the component code.

The following points should be taken into account when defining the names and types of event
handlers:

o As with properties, maintaining consistency between components (both those with similar event
handlers and those that generate events with similar purpose) is an important design criterion.

« Where an event represents a management intervention, its parameters should be defined in terms
that are meaningful to the user.

Computation order within time steps

Some components will need information that is computed by other components during the same time step. One example
is the rate of some related process; another is the case where the source component reads time-varying information in
from an external file. When this situation arises, it is important that computations take place only once the correct values
of the necessary driving variables have been calculated.

In the CPI protocol implementation, this is generally done by specifying a “sequencing order” for each of the events that
is trieoered bv the seauencer comnonent

4.4. Component description documents

CPI recommends that the process of specifying the interface to a component should be formally
documented in a fashion similar to that shown overleaf.

—10-



A sample component description document
This sample describes a real (if small) component:

1. Purpose of Component

The SOILT component encapsulates the EPIC soil temperature model (Williams 1985), as modified by Potter &
Williams (1994).

2. Initialisation Properties

Property Type Units Required? Description

ann_temp double °C Yes Long-term average annual temperature at the location of
the simulation.

layers double[ ] mm No Thickness of each soil layer. If not provided, layer
depths will be taken from the bd_layer driving property.

soilt double[ ] °C No Initial soil temperature in each soil layer. If not
provided, all layers will be initialised to the value of
ann_temp.

3. Subscribed Events — Sequenced

3.1. do_soil_water $
Default sequencing: 3000 /send complete

Computes the soil temperature model for the time step.

n do_soil_water arrives

1:Acquiring

do/get driving
variables

all data obtained

2:Executing

Done

)

-

do/model
calculations

{logic}
4. Subscribed Events — Other

None.

5. Published Events

None.

6. Driving properties

Property Type Units Event:State Number”  Description
bd_layer record initialisation 1 Soil bulk density profile.
: layers double[ ] mm
1 bd double[ ] Mg/m’
cover_tot double m’/m’ do_soil_temp:1 0+ Total cover of co-occurring plant
species.
daylength double hr do_soil temp:1 1 Day length including civil twilight.
maxt double °C do_soil_temp:1 1 Maximum air temperature.
mint double °C do_soil temp:1 1 Minimum air temperature.
residue_cover ~ double - do_soil temp:1 0+ Cover of standing dead and litter.
snow_pack double mm do_soil_temp:1 0-1 Snow on the soil surface, in water
equivalents. Default is 0.0.
sw_layer record do_soil_temp:1 1
: layers double[ ] mm Thickness of each soil layer.
:value double[ ] mm/mm Current soil water content in each
soil layer.
shoot_dm double do_soil temp:1 0+ Total dry weight of all herbage.

* “Number” refers to the number of sources for the driving variable that is permitted.

—-11 -




7. Owned properties

(a) Standard properties

A sample component description document (continued)

All initialisation properties are readable. In addition, the following owned properties are available:

(b) Component-specific properties

Property Type Units

Property Type Units  Description

name string Fully-qualified name of the component.

type string Value is “Soil Temp”

version string Value is “1.0”

author string Value is “CSIRO Plant Industry”

active Boolean Denotes whether or not the component is active
state string SDML description of the current state

Description

n/a

Constructing and distributing such “component description documents” has significant benefits.

It enables the “scientist” to provide the “programmer” with a clear account of the code that must
be written in order to implement the component wrapper (see section 6).

The descriptions of existing components are important resources for the developers of new
components, because they provide the information about the kinds and types of properties and
events that enable consistency of definitions to be achieved.

— 12—




5. Implementation basics

In the CPI implementation of the protocol, each component is implemented as a Microsoft Windows
DLL. The implementation of a component interface as computer code should be a routine task once
the sub-model’s interface is properly specified and documented and its equations are correctly coded.

5.1. Required binaries

Running simulations using the CMP requires a number of executable files in addition to the CMP-
compliant components. The CPI protocol implementation is structured as shown in Figure 5.1.

The central part of the CPI protocol implementation is prot .d11. This DLL contains the protocol
engine, which manages the messages that communicate between the modules in a simulation. The
User Interface is built to allow the user to customise a simulation and display results.
piwrapper.dll provides an interface that allows the protocol engine to communicate with
component DLLs that have been constructed with the TFarmwiselnstance API (see below). The
sim.dll, timesvr.dll and sequencer.dll components are supplied by CPIL. They each
carry out necessary tasks in the computation of a simulation, but they could be replaced by a
component developer who wished to carry out their tasks in a different fashion. dd1db.d11 is an
optional DLL that allows a single access point to a database of structured type definitions.

User interface
(FarmWise.exe)

prot.dlil piwrapper.dll

User component 1.dll User component 2.dll timesvr.dll pisim.dll sequencer.dll

ddidb.dll

Figure 5.1. Structure of the CPI protocol implementation: executable files.

TFarmwiselnstance has been implemented in both C++ and in Delphi (Object Pascal). Examples in
this document are given in Object Pascal. The class is distributed as compiled code (.OBJ for C++ and
.DCU for Delphi). Details of the interface to the class (including header files for C++) are provided
along with the compiled code.

5.2. Component-building API: the TFarmwiselnstance class

An efficient way to build CMP-compliant components, especially if they are to be executed within the
CPI implementation, is to use CPI’s component-building API. This API is provided as compiled code
for a set of classes that implement most of the CMP-specific functionality. By using these classes, a
component builder can concentrate on coding the sub-model-specific logic.

It is good practice to keep the interface code and the code containing model logic separate. As a rule,
a “logic class” containing the model equations will be written either prior to, or in parallel with, the
implementation process described in section 6.

— 13—



Custom User Interface

TCMPSimulation

Protocol engine

(prot.dll) ﬂ\#> DDML types

database

Messages in Common Messgges in Common
Modeling Protocol format Modeling Protocol format
Messaging
Wrapper
APSRU (piwrapper.dll)
component .
P1 spec function calls

TFarmwiselnstance TFarmwiselnstance

Pl component 1 Pl component 2

Figure 5.2. Structure of the CPI protocol implementation: view of the key classes and communication pathways. The
process for linking the protocol engine to a user interface via the TCMPSimulation API class is described in a separate
document.

The supporting classes are available in C++ and Pascal. Development tools currently supported
include Visual C++, Borland C++ Builder and Borland Delphi.

The main parent class in the component-building API is called TFarmwiselnstance. This class
decodes and encodes messages, initialisation information etc and provides the information they
contain in readily-accessible forms. Almost all the work in implementing a component is done by
creating a descendant class of TFarmwiselnstance.

Figure 5.3 illustrates the internal structure of two components implemented with TFarmwiselnstance.
On the left, a TTextReporter logic class has been “wrapped” inside a TFarmwiselnstance descendant
called TTextOutlnstance that provides the interface to the rest of the protocol implementation.
TTextOutlnstance contains code to handle definition of the component properties and event handlers,
initialisation, the acquisition of driving variables and provision of owned variables and the handling of
events. On the right, a second logic class (TLocalityModel) has been “wrapped” inside a second
TFarmwiselnstance descendant called TWeatherInstance that performs corresponding tasks.

The TTypedValue class hierarchy is used to provide data values (including various types and units).
TTypedValue itself is an abstract class; it is implemented as TSDMLValue, TDDMLValue or
TnitValue.

Because the CMP depends upon XML, parsing support for XML is also required. The C++ version of
the component-building API requires Xerces 2.5.0, while the Delphi version requires XDOM 2.3.
Both these XML parsing systems are open source; they can be located at

— 14—



TFarmwiselnstance TStateMachine,

-name
-modelType

-author
-version
TTypedValue| * 1 -3vlentsLl.\/Itanager TEventsManager
-driverLis
I @ ; & ——
-propertyList TMEvent
1

-eventList 1 1
-queryList

+Initialise()
+Terminate()
+assignDriver()
+initProperty()
+readProperty()
+writeProperty()
+processEventState()
+processEntityInfo()
+doGetPropertySize()
#doAtDeletion()
#driverListClear()
#addDriver()
#propertyListClear()
#addProperty()
#propertyNameTolD()
#eventListClear()
#addEvent()
#defineEventState()
#defineEventTransition()
#eventParams()

Weather data access component

TWeatherLocality

Text reporting component

TWeatherinstance
TTextReporter TTextOutinstance -Initvalues
-Title FReporter -TimeStep
-FileName - -Localit: "
-Reportinterval 1 1 +Create() +Creatz() TLocalityModel
-IntervalUnit @ +Destroy() +Destroy() *>—
+AddVariable() +initProperty() +Initialise() 1 1 |[*BeginRun()
+BeginWriting() +assignDriver() +initProperty() +Execute()
+EndWriting() +processEventState() +assignDriver()
+StoreVariable() +processEntitylnfo() +readProperty()
+WriteVariables() +processEventState()

Interface to local
variables and
events

Contains
sub-model
logic

Contains
sub-model
logic

Figure 5.3. Classes involved in implementing two components by using 7Farmwiselnstance.

Xerces http://xml.apache.org/xerces-c/
XDOM http://www.philo.de/xml/dom/

5.3. Event processing using the state machine

The CMP implementation is designed to accommodate asynchronous processing. One consequence of
this is that whenever an event handler generates a message that is sent to the rest of the simulation, the
generating component must wait for the response to the message before executing the rest of the
handler. In particular, this situation arises when the values of driving properties are requested:
multiple properties can be requested at once, but the event handler must wait for all requests to be
completed (and hence the driving values to be provided) before proceeding.

This requirement is met by implementing the code of each event handler within a state machine. The
code of each event handler is divided into one or more states. The transitions from one state to another
depend on the value of a guard condition that is set as each state is processed.

— 15—



Figure 5.4 shows a common state machine for sequenced events, in which the values of driving
properties are requested and then the event logic is computed. In this example, there is a single flow
from state to state; in general different guard conditions can apply at the end of a state’s processing,
resulting in a state diagram with branching.

/send complete

—S| Idle

execute arrives

TV
1:Acquiring

do/get time

{request data}
time obtained

VR
2:Executing
do/read in &
calc. weather

{logic}

Done

Figure 5.4. A simple state machine for an event handler.

16—



6. Implementing a component: step by step

A component is implemented by creating a subclass from TFarmwiselnstance and overriding specific
functions. When subclassing TFarmwiselnstance, the methods below are usually implemented:

Constructor This is the place where component-specific properties and events are
defined.
initialise() Called twice during the creation of each module, once before and once

after the module’s initialisation information is passed to it. Pre- or post-
processing of the initialisation information is carried out here.

initProperty() Sets initial values for properties.
readProperty() Used to provide the current values of owned properties to the rest of the
simulation

processEventState() Handles events that arrive from other parts of the simulation.
6.1. Defining the properties

Owned properties

In most cases, the properties and event handlers of a component are defined as part of the constructor
for the TFarmwiselntance descendant class. The addProperty() method is used to define each owned
property’s name, numeric ID, type and unit (where appropriate) and whether the property is readable,
writable, and/or an initialisation property.

//addProperty (sName, 1D, bRead, bWrite,bInit, sUnit,bIsArray,sType)

addProperty ("start", PrpSTART, false, false, true, W false, typeSTRING ) ;
addProperty ("finish", PrpEND, false, false, true, W false, typeSTRING ) ;
addProperty ("day", prpDAY, true, false, false, "-", false, typeINT4 ) 8
addProperty ("month", PrpMONTHNO, true, false, false, "-", false, typeINT4 ) 8
addProperty ("year", PrpYEARNO, true, false, false, "-", false, typeINT4 ) B

o The ID parameter is an integer. It is good practice to use constant values for property and event
IDs to ensure consistency between the methods that use them.

o The sType parameter is either a valid DDML type description, in which case the sUnit and bArray
parameters are ignored, or it is one of a set of predefined constants that denote a scalar type, in
which case the sUnit and bArray parameters are used. The most common scalar type parameters
are typeDOUBLE, typeINT4, typeSTRING and typeBOOLEAN. A variety of other useful
types are found in the piTypes code unit.

» Note that the first few property ID values are reserved for standard properties possessed by all
components. Component-specific property ID values should be equal to or greater than the
constant value PROP_START INDEX.

« Initialisation code (see below) must be provided for all properties for which the binit parameter is
set to TRUE.

Driving properties

The addDriver() method is used to define each driving property’s name, numeric ID and type, plus
the valid range for the number of responses received to a request for the driver. The three type-related
parameters are handled in the same way as for owned properties:

//addDriver ( sName, 1D, iMinConn, iMaxConn, sUnit, bIsArray, sType)
addDriver ( 'shc layer', drvsSHC L, 0, i '', FALSE, typeLAYERS SHC );
addDriver ( 'cover green', drvCOVER G, 0, NO MAXCONN, '-', FALSE, typeDOUBLE ) 8
addDriver( 'cover_ tot', drvCOVER_T, 0, NO_MAXCONN, '-', FALSE, typeDOUBLE ) B
addDriver ( 'sw layer', drvSwW L, i i, vy, FALSE, typeLAYERS SW ) B

—17 -




6.2. Defining the event handlers

When defining each event handler, the parameters and the states and possible transitions in the state
machine must be provided. The addEvent(), defineEventState() and defineEventTransition() methods
are used for this purpose.

The following code defines the (sequenced) event handler shown in figure 5.4. A second, simpler
event is also defined that does not require any driving property values; this state machine is typical for
management events:

const
evtEXEC =1; evtSOMETHING = 2;
smACQUIRE = 1; smPROCESS = 2;
typePARAMS '<type>'

'<field name="paraml" kind="double" unit="kg/ha"/>"'
'<field name="param2" kind="string"/>'
'</type>"';

+ + + 0l

// a simple sequenced event with driving property requests
addEvent ( 'do process', evtEXEC, kindSUBSCRIBED, typeEMPTY ); // sName, ID, iKind, sType

defineEventState ( evtEXEC, smACQUIRE, NONLOGIC ) ; // eventID, stateID, type
defineEventState ( evtEXEC, smPROCESS, LOGIC ) 8
g // eventID, statelD,

defineEventTransition( evtEXEC, smACQUIRE, FAIL, DONE

( )
defineEventTransition( evtEXEC, smACQUIRE, O, smPROCESS ) ; // condition, toState
defineEventTransition( evtEXEC, smPROCESS, FAIL, DONE ) 8
defineEventTransition( evtEXEC, smPROCESS, O, DONE ) 8

// a simple management event
addEvent ( 'do something', evtSOMETHING, kindSUBSCRIBED, typePARAMS );
defineEventState ( evtSOMETHING, smPROCESS, LOGIC );

defineEventTransition( evtEXEC, smPROCESS, O, DONE ) 8

o Note the use of typeEMPTY for sType in the first event; sequenced events may not have
parameters as the sequencer component has no way of determining values for them.

o “Logic” states do not contain any communication with the rest of the simulation, and so
processing can move to the next state immediately. “Non-logic” states must wait for information
for the rest of the simulation before processing continues. A state should be defined as “non-
logic” whenever it includes a property value request or a request for information about the
structure of the simulation.

6.3. Initialising properties

When a simulation is executed, the initialisation process for each component results in three sets of
method calls to the TFarmwiselnstance descendant:

1. The initialise() method is called with the stage parameter set to 1. Any component initialisation
code that was not implemented in the constructor can be implemented here.

2. The initProperty() method is called for each initial value provided in the simulation’s SDML
document. The implementation of initProperty() must store these value data, often by passing
them to the model logic object.

3. Once all the initial value data have been passed, the initialise() method is called a second time
with stage parameter set to 2. Any component initialisation code that depends on combining
initialisation values can be implemented here.

— 18—




As a result, the initialise() and initProperty() implementations tend to look like this:

procedure TMyInstance.Initialise( iStage : Integer );

begin
if (iStage = 1) then
begin
//** pre-processing code here **//
end
else if (iStage = 2) then
begin
//** combine any initialisation values here **//
end
end;

procedure TMyInstance.initProperty( iPropertyID : Integer; aValue : TTypedValue );
begin
case iPropertyID of
PrpSTART : FModel.setStart( aValue.asString );

PrpEND : FModel.setEnd ( aValue.AsString );

// etc

else raise Exception.Create( 'Invalid ID code in initProperty' );
end;

end;

6.4. Acquiring values for driving properties

Driving properties must be defined before they can be requested (see section 6.1). Values of driving
properties are requested within event handlers by calling the sendDriverRequest() method. Zero or
more responses to the request may be received. A call to the assignDriver() method will be made for
each valid response; this method must therefore implement code to store or otherwise handle the
driving variable’s value.

A typical implementation of assignDriver() looks like this:

procedure TMyInstance.assignDriver ( iDriverID : longword;

iProvider : Integer;
aValue : TTypedValue );
begin
case iDriverID of
drvCOVER_G : FCoverGreenAll := 1.0 - (1.0-FCoverGreenAll) * (l1.0-aValue.asDouble);
drvCOVER T : FCoverTotalAll := 1.0 - (1.0-FCoverTotalAll) + (l1.0-aValue.asDouble);
drvsWw L : Layers2LayerArray( aValue, FTheta );
// etc
else
inherited assignDriver (iDriverID, iProvider, aValue);
end;

end;

6.5. Implementing model logic — event handlers

All event-handling code must be implemented within the processEventState() function of the
TFarmwiselnstance descendant class. Code must be written for each state of each event. The function
result must give a valid guard condition value for each state of each event (i.e. one that has been given
in a call to defineEventTransition()) as it will determine the next transition of the state machine.

The following function might implement the two events that were defined in the example code in
section 6.2:

—19 —




processEventState
Selects the event and its state to be processed.
Returns: The guard condition/result of the state's processing

function TMyInstance.processEventState( iEventID, iState : Integer;

iSender : LongWord;
Params : TTypedValue): integer;
var
iCondition: integer; //guard condition to return
begin
// do_process event
if (iEventID = evtEXEC) then
begin
case iState of //choose the state to execute
smACQUIRE : begin
sendDriverRequest ( drvTIME, iEventID ); // causes FTimeStep to be
iCondition := 0; // populated

end;
smPROCESS : begin
FModel .Execute ( FTimeStep.Start.iDay );

iCondition := 0;
end;
else iCondition := inherited processEventState (iEventID,iState, iSender, Params) ;
end;
end

// do_something event

else if (iEventID = evtSOMETHING) and (iState = smPROCESS) then
begin
FModel.doSomething ( Params.Member['paraml'].asDouble,
Params.Member|['param2'].asString );

iCondition := 0
end
else

iCondition := inherited processEventState( iEventID, iState, iSender, Params );
Result := iCondition;

end;

Note the way in which:
« cach state of each event has a block of code that sets the guard condition;

» information from the rest of the simulation (driving property values or event parameters) is passed
to methods of the model logic class for processing;

« all event-state combinations that were not defined as part of the event’s state machine are passed to
the inherited version of processEventState()

6.6. Providing values for owned properties

Requests from the rest of the simulation for the value of an owned property will result in a call to the
readProperty() method of the TFarmwiselnstance descendant class. Code must be written to populate
the TTypedValue parameter of this method with the current value of the nominated property. The
value parameter is guaranteed to be of the correct type, but the lengths of any arrays in the value must
be set to the correct length as part of populating the value.

—-20-—



The readProperty() method will typically look something like this:

procedure TMyInstance.readProperty (

iPropertyID : Integer // local ID of owned property
iRequestor Integer; // ID of requesting component
aValue TPropertyInfo ); // TTyoedValue descendant
begin
case iPropertyID of

PrpELEV aValue.setValue ( FModel.fElevationM ) 8 // populate scalar values

PrpLATT aValue.setValue ( FModel.fLatDegrees ) 8

prpLONG aValue.setValue ( FModel.fLongDegrees );

PrpMAXT aValue.setValue ( FModel.getData ( wdtMaxT ) );

PrpMINT aValue.setValue( FModel.getData ( wdtMinT ) );

PrpWEATHER : begin // populate a record
aValue.Item[1l].setValue( FModel.getData (wdtMaxT) );
aValue.Item[2].setValue( FModel.getData (wdtMinT) ) ;
aValue.Item[3].setValue( FModel.getData (wdtRain) );
aValue.Item[4].setValue( FModel.getData (wdtSnow) );
aValue.Item[5].setValue( FModel.getData (wdtRadn) );
aValue.Item[6].setValue( FModel.fVP Deficit ) 8
aValue.Item[7].setValue( FModel.getData (wdtWind) );

end;

// etc

else raise Exception.Create( 'Invalid ID code in readProperty' );

end;
end;

6.7. Publishing events

The process for sending an event from a component to the rest of the simulation (thereby triggering a
computation in another component or components) is:

1. Define the name and type of the event to be published via a call to defineEvent() with the kind
parameter set to kindPUBLISHED. This is usually done in the subclass constructor.

2. Call the sendPublishEvent() when the event is to be triggered. This function takes the numeric ID
of the event as an argument. If the event has parameters, they reside in a T7TypedValue that can be
obtained via a call to the eventParams() method; they must be populated before the call to
sendPublishEvent().

publParams := eventParams( 33 ); // eventID
publParams.Member [ 'paraml'].asString := 'something';
publParams.Member|['paraml'].asDouble := 0.0;
sendPublishEvent ( 33, TRUE ); // eventID, bAcknowledge

For further discussion of published events, see section 2.3 of the protocol specification document.
6.8. Handling errors

Components may report errors at any time during the simulation, or while the simulation is starting or
terminating. Errors fall into two categories; fatal and non-fatal. Fatal errors will cause the simulation
to terminate. Within a TFarmwiselnstance subclass, the sendError() method is used to report an error
and, if necessary, to terminate the simulation. As a rule, therefore, exception-handling code should
include a call to sendError().

try
// processing code here

except
on E : Exception do
sendError( 'Error in my comp: '+E.Message, TRUE );
end;

21—




6.9. Discovering the current time step

To discover the start and end times of the current time step, a component must define the time
driving property. This property must have the typeTIMESTEP type, which is a record with the
following fields:

<type>
<field name="startDay" kind="integer4" unit="d" />
<field name="startSec" kind="integer4" unit="s" />
<field name="startSecPart" kind="double" unit="s" />
<field name="endDay" kind="integer4" unit="d" />
<field name="endSec" kind="integer4" unit="s" />
<field name="endSecPart" kind="double" unit="s" />

</type>

The two day fields in this type are stored as Julian Day Numbers. TTypedValue data for this property
can be decoded and manipulated using the 77imeValue class that is provided as part of the component
APL

—-22 —




7. Advanced topics
7.1. The connection scheme

When a simulation contains multiple modules drawn from the same component, the question arises:
which of many possible sources for a driving property should be used? We refer to the rules for
determining this as a connection scheme.

In the CPI protocol implementation, connections for a driving property are made to those source
components that are equally-nearest to the requesting component. “Distance” is calculated using the
number of steps up and down the hierarchical tree of components. Components cannot connect to
themselves.

Whenever the simulation is restructured, the system components update the set of connections for
each driving property belonging to components within their system.

7.2. Querying the simulation for its structure

The sendQueryInfo() method requests information about a component, property or event elsewhere in
the simulation. Responses will result in a call to the processEntitylnfo() method.

7.3. Other TFarmwiselnstance methods that generate messages

sendPauseSim() Pauses or resumes a simulation.

sendActivateComp() Activates another component.

sendEndSimulation() Terminates the simulation.

sendComplete() Sends an acknowledgement to another component. This method should
only be called in a context mandated by the protocol specification.

addSetterProperty() Adds a property reset request to the component and registers it.

sendReqSetValue() Requests that the value of another component’s property be reset.

deleteProperty() Removes an owned property from the component. It is then deregistered.

deleteDriver() Removes a driving property from the component. It is then deregistered.

deleteSetterProperty() Removes a property reset request from the component. It is then
deregistered.

deleteEvent() Removes an event from the component and deregisters it.

—-23 —



8. Further documentation
8.1. Common Modelling Protocol specification

The Common Modelling Protocol has been defined in detail in a public document entitled:
‘Specification of the CSIRO Common Modelling Protocol’. This document covers in detail;
definitions, system tasks, messaging, properties and events, data types, SDML, and some
implementation techniques.

8.2. Typed Value specification

Throughout the PI implementation of the CMP, TTypedValue and its descendant classes are used to
contain structured types with their definitions and values. This technique allows for types of any
complexity to be specified and manipulated.

The document “Typed Value objects in the CPI implementation of the Common Modelling Protocol.”
contains details about the TTypedValue class.

8.3. Help file

A Windows Help file named CMP_HELP.CHM accompanies this document. This file contains more
detailed documentation of the classes used in the component-building APL

_24—



