CSIRO AGRICULTURE

AusFarm — A Tutorial

Tutorial version 1.9
Jan 2015

I .
St iy T .
wFE e lw. L

Enquiries should be addressed to:
Neville Herrmann

CSIRO Agriculture
GPO Box 1600
Canberra ACT 2601
grazplan@csiro.au

Copyright and Disclaimer

© 2015 CSIRO To the extent permitted by law, all rights are reserved and no part of this
publication covered by copyright may be reproduced or copied in any form or by any means
except with the written permission of CSIRO.

Important Disclaimer

CSIRO advises that the information contained in this publication comprises general statements
based on scientific research. The reader is advised and needs to be aware that such information
may be incomplete or unable to be used in any specific situation. No reliance or actions must
therefore be made on that information without seeking prior expert professional, scientific and
technical advice. To the extent permitted by law, CSIRO (including its employees and
consultants) excludes all liability to any person for any consequences, including but not limited
to all losses, damages, costs, expenses and any other compensation, arising directly or
indirectly from using this publication (in part or in whole) and any information or material
contained in it.

Contents

1. INtrodUChioN ... e —————————— 7
L1 AUSFAIMMN Lot 7

1.2 PUrpose of DOCUMENL.........cociiiiiiiice e 8

2. Components, Modules and Systems........cccceeiiiimmiiicccssn e 9
2.1 COMPONENLS .uuiiiiiii ettt e ettt r e e e s e e ettt s e e e e e e e e st a e s e eeeeesbabnneeeaeeseneanns 9

2.2 MOAUIES ...ttt b et s s 9

PG B S V1 (=1 1 11 PSP TPPPPPPPIN 10

3. Variables..... 11
4 EVENLS ... ——————— 13
4.1 ManNagEMENT BVENLSuuuriiiriiiiiriiiririirerr bbb s e ara e 13

S 1= To (U 1=T g Tot =T o= o 13

5. Using AusFarm.......... i 15
6. Getting Started...........ceueeeiiiiiiiiiiiiie i —————————— 16
6.1 INSEAlliNG AUSFAIM ..o e 16

LA = U0 [T o 1T o AN £ = T o P 16

6.3 The Main WINGOWooiiiiiiiiieiiiiii ettt anb e e 17

6.4 A Tour of the SImulation WINGAOWcoocuiriiiiiieiiire e 17

6.5 UPPEI PANE ..ottt e e e e e a e 18

LS T =Y 1 =T T I o= T T 19

6.7 RIGE-NANG PANE ..coiiiiiii et 19

6.8 Configuring and InitialiSing MOAUIESuuuiiiiiiiiiiiiieieieiiieieieieeieerieeen . 21

6.9 The Notes and Logging tabS.........coooiiiiiiiiii e 21

6.10 Selecting and StOrNG OULPULSueviviieieiiiiieieieieieirieisieesreerreesrerrrsrreser——.. 22

6.10.1 EXPOItING FESUILSoeeiiiieiiee e 24

6.10.2 Using the TexXtOUL COMPONENTuiiiiieiiiiiieee e 24

6.11 RUNNING @ SIMUIALIONcoiiiiiiiiiiii e 24

6.12 The RESUIS WINUOW.......ciiuiiiiiiiiiiie ittt 25

6.13 Generating @ ChaIcoo i s e 26

6.14 Generating @ table ... 27

6.15 Data trEAIMENTSeiiiiiiie ettt e e e e e e r e e s eeen e 28

7. Configuring a NEW simulation..............ueemmiiiiiiiiiiimiiisssessssssssssssssssssssssssessennens 31
7.1 Specifying iNItIAl VAIUESooiiiiiiiieiiee et 31

7.11 Comparing initial values of COMPONENESccveiiiiiiiiiiee e 33

7.1.2 USING APSOIl SOIl AALAovveeeeiiiii e 34

7.2 Sequencing the SIMUIALIONoiiiiiii e 36

10.

11.
12.

13.

Vi

Simulation ANAlYSesccccciiiiii - 38
8.1 SEttiNg UP GNAIYSESceiiiiiiiieiiiie ettt ettt 38
8.2 Using Generic modules as faCtors........cccceeeiiiiiiiiiiiie e 40
Configuring REPOILScooiiiieecciiii s r s s r e s s e e e nmmnns 41
LS 0 = LT o Lo g A 2T T o] =TSSR 41
USIiNg REPOSItOriesueciiiiiiiiiccccccs s r e r s s e s e s e e 43
10.1 Getting module data from a rePOSItOrY.........cccuviiiiieee i 43
10.2 Copying module data to 8 rEPOSITONY.........ccoiiuereiiiiiiieeeiiiiee ettt e e sbaeee e 44
10.3 Copying module data from simulation to simulationccccccee i, 44
Specifying Managementcooiccnii i e 45
Writing management SCriptscccciiiii s 47
12,1 USING the SCHPL @AITONeeiiiiiiiiee et e e 47
12.1.1 (@oTe [oTo] 0] o] (=1 1 o o I RSP 47
12.1.2 MALCHING DIACES ... ittt 48
12.1.3 BOOKMAIKS ... 48
12.1.4 ChecKing the SCHPLviiiieee e 49
12.1.5 Inspecting the Management SCHPLeeeiiiiieiiiiie e 49
12.2 TIiME SPECITIEIS .. iitiiee ettt ettt e et e e st re e e e sbneeeean 49
L12.3 RUIES ..ottt e e e e e e e e e e e e s bbb e e e e e e e e naeees 50
12.3.1 EVENETUIES ...ttt e e e e e e e e e e s nerareeaaeeean 50
12.3.2 ASSIGNIMENESeieeeiiiiee ettt e et e e e ettt e e s bt e e e e st beeeeenteeeesnnreeesneeeesnnnes 50
12.3.3 IS O £ SRR 51
12.34 CONAILIONAI TUIES ..t e e e 51
12.35 [O] [0 o] o 1 T PP P PP PPPPPPPRRPN 52
12.3.6 WWHILE TOOPS ...ttt ettt e e e ettt e e e e e neba e e e e e e e e e nnnees 52
12.3.7 SUBROUTINE CallS .ottt a e e 53
12.3.8 1o [T C=Tot o] o [P T PP PP TR PPPPPPPPPPO 54
2 R V=T o o = U o {1 PSR 54
L2 5 EXPIESSIONS . i ———————— 55
12.5.1 CONSEANTS ...ttt s 55
12.5.2 VaANIBDIES ... a e e 56
1253 (1= =1 (o] (= PP EP PR RPTRI 56
1254 FUNCLIONS L.t e e e e e e er e e e e e e as 58
12.6 DefiNition StAtEMENTS........uuiiiiieeee e e e e e s s e e e e e e 59
12.6.1 Advanced initialisation of variables ... 60
12.6.2 Using constants as array Size SPECIfIerS.......cuviiiiiiiiiiiee e 61
12.7 Examples of complete StatemMENtS........cooii it 61
Management Events SUMMArYy.........ccccciiiiiiiinii s 62

1. INTRODUCTION

1.1 AusFarm

AusFarm is a software tool that allows problems to be analysed with simulation models of physical
and biological systems. AusFarm is highly generic, but it has been built primarily to assist decision-
making in agricultural enterprises at scales ranging from paddocks to whole landscapes.

The AusFarm software contains powerful facilities for analysing risk over both the short- and long-

term.

Simulations in AusFarm have the following features:

Modularity

Configurability

Interchangeability

Representation of
both continuous and
discrete processes

Instead of a single program that contains the entire "AusFarm model”,
simulations in AusFarm are built up from smaller elements known as
components that describe parts of a biophysical system.

For example, the standard AusFarm distribution includes one
component that handles weather data, and another that describes the
dynamics of grazing ruminants.

Separating the parts of a model that are closely related into sub-
models has advantages during model development, for software
maintenance, and in the deployment of up-to-date versions of models.
It also means that models from groups other than CSIRO Plant
Industry can be used within AusFarm.

Once a simulation model is decomposed into components, it becomes
natural to arrange the sub-models in configurations that reflect a range
of different real-world situations.

The practical advantages are that an AusFarm user can put together
the simplest model required to analyse a given problem, and can use
multiple copies of a model component within a simulation (for
example to represent the flows of soil water in each of several
paddocks).

Modular construction also permits substitution of one representation
of a process by another, depending on the needs of the user. This can
be useful in comparing different representations of a process, or in
configuring a simulation for efficient execution.

Many processes in agricultural systems are fundamentally continuous
in nature. Others, particularly management interventions, involve
sharp changes in the state of the system, which may be thought of as
instantaneous events. AusFarm can accommodate both continuous and
discontinuous processes.

Hierarchical Ecological and hence agronomic systems contain too many entities to

structure be solved analytically by differential-equation techniques, and they
have too few entities to be treated as statistical assemblages. Current
ecological theory suggests that the best way to analyze this kind of
complexity is to take advantage of the hierarchical organization in
these systems that arises from differences in the rates of different
processes. Simulations in AusFarm can be configured to capture such
hierarchical structure.

AusFarm has been developed by CSIRO Plant Industry. The standard distribution includes a set of
models, also developed by CSIRO Plant Industry, that enable simulations of grazing enterprises
located in temperate southern Australia.

1.2 Purpose of Document

This document has three main parts:

e Sections 2-5 are an introduction to the concepts used in AusFarm. The reader should understand
these concepts before proceeding

e Sections 6-14 are a software tutorial.

e Sections 15-16 provide detailed information about how to write management scripts and about the
management events of components in the default AusFarm distribution.

More information about the subjects covered in this document may be found in the AusFarm Help

file.

2. COMPONENTS, MODULES AND SYSTEMS

21 Components

In AusFarm, model logic is contained within entities called components. Each component corresponds
to a sub-model, i.e. a set of variables, equations and events that are inter-related. For example, the
standard distribution of AusFarm contains a Soil Water component that contains the logic for a soil
water budget, and a Stock component that contains the GRAZPLAN ruminant biology model.

Some components can be thought of as "utilities” - they perform tasks that are not part of the model in
a narrow sense (i.e. as a mathematical entity) but are vital to making the model useful. An example of
a utility is the Output component, which allows the user to store the results of simulations for later
interpretation.

Each component is implemented as a Windows dynamic link library (DLL). Before a component can
be used in a simulation, it must be installed on the component palette.

CSIRO '|

M E S om T o N R B

2.2 Modules

A module is a specific instance of a component within a Models _ _
specific simulation. A simulation may contain several modules || % M“'tr'ﬂ':'add':":k Wethers @ Hamilton
that are instances of the same component. For example, in the '—" Dj:;i?er
simulation structure at right, there are two modules thatare || i o Hamilton_[¥IC)
instances of the Soil Water component, and six that are 4 €83 Paddock_1
instances of the Pasture component. -2 Hamitan_P

----- o;{c Pererinial_Ruedgrass
A module can only exist as part of a simulation. The setof || %¢ Sub_Clover_Leura
modules in a simulation is defined by adding them to the £ ﬁ_ﬁ djgg:a'zﬁyeg’m
simulation tree in the Models tab of the simulation window. L Hamiﬁm_pm
This process is known as configuring the simulation. || § . sf¢ Perennial_Fypegrass

----- :g;{c Sub_Clover_Leura
From the point of view of an AusFarm user, each module is || : & #f¢ Annual_Ryegrass
made up of the following elements: -1’ Finewool_Merino_wethers

Fi i 3

Name A module's name is supplied by the user via the Models tab. It is used to refer

to the module and its variables or events, for example when writing the
management script. Each module has a short name (e.g. "Annual_Ryegrass")
and a fully-qualified name that is defined by the systems to which it belongs
(e.g. "Paddock_2. Annual_Ryegrass "). The short name need not be unique,
but the fully-qualified name must be unique.

Initialisation
Variables

Driving Variables

Output Variables

Sequenced Events

Management
Events

2.3 Systems

contain the values that must be known to set up a module.

contain values that are not part of the module, but must be known to calculate
its equations.

contain values that can be stored for later viewing and analysis, and/or used in
management scripts to control the course of the simulation. (Initialisation
variables are usually also available as output variables).

contain the rate equations of the module, i.e. the main model logic. Each
sequenced event is computed once per time step. AusFarm handles the setting
up of sequenced events automatically.

can be invoked as part of management scripts to change the module's state in
some way.

The modules in each simulation are arranged, not in a simple list, but in a tree. Each sub-tree of this
structure is known as a system, and the module at the "root" of a sub-tree is called a system module.
The simulation structure above has three systems: the system made up of Paddock_1 and its child
modules, the system made up of Paddock 2 and its child modules, and the entire simulation. Only
certain components can act as system modules. In the default AusFarm distribution, only the Paddock
component can be used to form systems.

10

3. VARIABLES

In AusFarm, the variables of each component are used to represent the quantities used in the
equations and events that the component embodies. A “variable” in AusFarm includes a wide range
of quantities from a modeller's point of view, including:

State variables Quantities that may vary in time as the simulation is computed. The value of a state
variable must be known in order to compute the dynamics of the module to which it
belongs.

Constants Quantities that are (i) invariant in time and (ii) have the same value in all modules
of all simulations.

Parameters Quantities that are invariant in time, but may take different values in different
modules, either within a simulation or between simulations.

Driving Quantities that are stored externally to a given module but must be known in order

variables to compute the dynamics of the module. They may (and usually do) vary in time.
Each driving variable must have one or more sources; a source must be an output
variable from another module.

Output Quantities that may be accessed by other modules in the simulation, including for

variables storage as results or for use in management scripts. Output variables may be state
variables, constants or parameters, but may also be "summary" variables computed
from them.

The variables that drive the simulation as a whole (e.g. weather data) also appear as
the output variables of modules that read them in.

Every variable in AusFarm has a name, a type, and a value. When referring to a variable, its name

may be qualified to ensure that the reference is not ambiguous: for example, the sw variable within
the paddock3.water module may also be referred to as paddock3.water. sw.

The value of a variable can change through time as the simulation is executed. The initial value of
each state variable and parameter must be provided by the user in order for the simulation to be
computed; these two types of variables are known as initialisation variables.

Variables come in three main kinds, or types: scalars, arrays and structures.

Scalars have a single value. There are four types of scalar variables:

Real Can be any numeric value. When writing a real value in a management script, either
decimal notation (e.g. -63. 45) or exponential notation (e.g. 1.46E-5) may be
used.

Integer whole values: ...-4, -3,-2,-1,0,1, 2, 3, 4, ...

Text may contain any text (i.e. zero or more characters). When writing a text value in a

management script, the characters are surrounded with single quotes (e.g. 'xyz') to

11

distinguish them from references to variables, which are written without quotes. To
place a quote character in a text value, write two quotes: for example, writing
'quote ('') ' gives the value quote (').

Logical variables are either true or false. A true value is written as TRUE in a management
script, while a false value is written as FALSE (this is case-insensitive)

Arrays are ordered lists of variables in which all the members (known as elements) are of the same
type. When writing an array in a management script (the Manager module), the elements are
surrounded with square brackets ([]) and successive elements are separated from one another with
commas. The name of the n-th element of the array named array isarray [n] (nisknown asan
index). The first element of an array has index 1.

define integer x[8] ! An array of integers called x

set x[6] = 99 ! Refer to the 6th element of array x

Structures are lists of variables in which the members (known as fields) may be of different types.
Since each field of a structure is itself a variable, it has a name and a type. When writing a structure
value in a management script:

o the structure is surrounded by brackets (());

e successive fields are separated from one another with semi-colons; and

o the value of each field is preceded by its name and a colon.

To refer to a field of a structure variable in a management script, append the field name to the
structure name, with a colon between them (e.g. seeds:soft_ripe).

define s = (fieldl:8; field2:'fox'; field3:- 99.9) ! A structure with three fields

set s:field2 = '"jumps' ! Refer to the second field of structure s

12

4, EVENTS

41 Management events

A management event of a module represents an instantaneous change in the module’s state variables.
Each event has zero or more quantities, known as parameters, which are used to specify exactly how
the module’s state variables are changed.

For example:

o Application of irrigation water to a soil can be represented as an event that changes the amount of
water present in the soil profile. The amount of water applied and the rate of application are
parameters that affect how the added water will percolate into the soil.

e The selling of livestock is an event that changes the number of a specific group of animals that are
present in the simulation. The group of animals to be sold, and the number to sell are the
parameters of this event.

An event is specified in a management script by giving its name, followed by the value of zero or
more parameters. Each parameter is written by giving its name, followed by an equals sign (=) and an
expression that is computed to give the value of the parameter (see section 15.3 for more information
about expressions).

! Send the "shear" event (with no parameters) to all modules that accept it.
shear

! Send the "buy" event to a specific module named '"cattle'.

! Four parameters are given, with a space between the event name and first parameter

q and commas between the parameters.

! Note how the "number" parameter is specified as an expression that must be evaluated.

cattle.buy =0.5*stock rate*paddockl.area, ='steers', =8.0, =200.0

More detail about specifying events is given in section 15.2.

4.2 Sequenced events

The rate equations of components are also implemented as software events, known as sequenced
events. Each sequenced event is computed once per time step. AusFarm handles the setting up of the
sequenced events automatically.

These events are called "sequenced events"” because the order in which they are computed can affect
the simulation's results. For example, if a Weather module executes the logic that reads in the
temperature data for a day after a plant growth module uses the temperatures to compute growth of
the plants, the resulting growth rates will be different to those obtained if the weather data are read in
before the growth computations.

The order of computations within each time step is known as a simulation's sequencing. The order is
expressed by assigning a positive integer value (its ordering) to each sequenced event in a simulation:
an event with a lower ordering is executed before one with a higher ordering. The order in which
events with the same ordering value are executed is left unspecified. Ordering values are only

13

meaningful relative to one another. AusFarm configures default sequencing for each simulation. This
default only needs to be changed under special circumstances.

Note: Interms of their implementation as software, there is no distinction between a sequenced

event and a management event, except that sequenced events may not have parameters. The
distinction between them arises from the purpose of the event code.

14

5. USING AUSFARM

Typically, use of AusFarm will follow these steps:

e Determine what question AusFarm is to answer, and therefore what information a simulation (or
simulations) with AusFarm needs to generate. This is the most important step in the process.

e Construct a simulation that represents the biophysical and management system under
consideration.

(a) Create a simulation window, or open an existing simulation file that is suited to the question
at hand.

(b) Configure the simulation to include representations of all the processes that are important in
understanding the biophysical problem.

(c) Specify the initial conditions of the simulation: the locality for which weather data are to be
used, the attributes of soils, plants and animals on the first day of the simulation, costs and
prices, etc.

(d) If necessary, describe the management of the biophysical system by writing a management
script.

(e) Select the outputs to be stored for later viewing.

e Run the simulation.

o Extract the results of the simulation as tables or charts, and using these outputs to help answer the
question at hand. AusFarm contains powerful facilities for summarizing simulation outputs. It
may also be useful to export information from AusFarm to another program such as a spreadsheet
or statistics package for further analysis.

Answering a question will often require several slightly different simulations. If so, the user can make
copies of the first simulation quickly and easily and then adjust the copies. AusFarm allows several
simulations to be executed simultaneously.

Often, the set of simulations that is required takes the form of a structured “simulation experiment” in
which one or more inputs to the simulation are varied systematically. Such simulation experiments
can require large numbers of simulation runs. AusFarm contains an analysis facility that allows the
user to design, execute and report on such sets of simulations.

Note: Beyond a certain level of complexity, it becomes almost inevitable that a simulation will not
work as intended the first time it is run. It is the user's responsibility to store and examine
outputs from the simulations to ensure that their structure, initial values and management
script are working as intended. Various logging options are available to assist in this process.

15

6. GETTING STARTED

The software tutorial section of this manual begins here.

6.1 Installing AusFarm
e AusFarm is currently a Microsoft® Windows 32 bit native code program that can be installed and

run on 32 bit and 64 bit versions of Windows.

e Start by installing the AusFarm software. Run the setupaf.exe program and follow the prompts.
Some sample weather data will be installed that will allow the running of an example simulation.

6.2 Running AusFarm

¢ Run the AusFarm program. The main window will appear:

File Model Simulation Tools Window Help

D EEHEDS IR |
b E S om T e W OR B

The main window has a menu and toolbar at the top and a client area where other windows for
simulations, results selection and reporting reside. At the right-hand side of the toolbar is the
Component Palette, which is used when configuring simulations.

e Choose the File | Reopen option and choose the Example.afs simulation.

16

6.3 The Main Window

The main window hosts simulation windows. You may have multiple simulations open at once. Along
the top of the main window is the main toolbar and the component palette.

The main toolbar is useful for quick access to common tasks.

e Create a new simulation

e Open an existing simulation
e Save the current simulation
e Open the outputs window

e Show or hide the Repository
o Open the preferences dialog

The component palette displays the components
that are able to be incorporated into a simulation.

They can be dragged from here with the mouse W E A= &Irﬁ ma L
onto a simulation tree. Right clicking the mouse Sequencib

on a component item on the palette displays a
menu with further options.

CSIROD |

|

Change icon

Help

Remowve

Mowve to 3
Info Reads the internal component description and displays property and event

information.

Sequence Allows changing of the default sequenced event ordering for this component.
Change icon Allows changing of the default component icon
Help Opens the help file with the component specification for this component
Remove Removes the component from the palette. This does not delete the file
Move to Options for moving components onto other tabs

6.4 A Tour of the Simulation Window

Simulation windows are used to create and modify simulations. It is possible to have several
Simulation windows open in AusFarm at once.

17

Q ChUsers\herl23\Documents\AusFarm\Example.afs EI @

Type | Historical Start: 1 Jan 1970 @ After processing open
End: 31 Dec 1580 [=] [Repor -]
Models | Manager Script | Notes | Logaing|
‘J Example !l define real stocking rate = 10.0 ! wethers/ha —

-+ M manager 2 define real cfa years = 5.0
= output]
G weather 4
4 @ paddock 5
Lo ﬂ water

! Replacement

m

& define real no to buy
% pasture . -t
R stack 7 define real group count
2 define integer g
2
18 gach 1 Jan

L supplement

11 4
12 for g = 1 to stock.no_groups
13 stock.sell group=g, nunber=0,25%*stock.nunber[g]

15 set g = stock.no_groups + 1

16 get no to_buy = stocking rate * paddockl.area - stock.number 211
17 stock.buy genotype='3mall Merino'
18 stock.tag group=g, wvalus=g+l

12 stock.move group=g, paddock='paddockl'

, number=no to_buy, sex='wethers', age=12.0,

4 m 3

[Log Manager output o logfile

[T Log Set events Test parsing

Each Simulation window is divided into three main areas, or panes. The two middle panes contain a
number of tabs that become visible depending on the task that the user is performing.

6.5 Upper pane

The upper pane is used to enter the date ranges over which the simulation is to be executed. The
preferred reporting option is also chosen here.

Type : | Historical Stat: 1Jan 1570 @ After processing open
End: 31 Dec 1360 | 2 | [Repor 7]

Type Use this combo box to select the type of simulation run that is to be performed. In this release
of AusFarm, the only option in this combo box is "Historical".

Start Enter the start date for the simulation. Note that all initial values that are entered apply on this
date. Dates may be entered in "d mmm yyyy" format, or selected by clicking on the calendar
buttons and so opening a calendar dialog.

End Enter the end date for the simulation.

| = |Click the Run button to commence executing the simulation.

This button appears when the simulation is configured as an Analysis. It will execute the
Analysis.

18

../help/html/analysis.html

The Stop button appears while the simulation is executing. Click it to halt execution.

6.6 Left-hand pane

This pane has three tabs:

Models | variables | Events | Models tab is always visible. It is used to configure the simulation
4 Example model.
""" M manager
----- = output Selecting a module in the Models tab will make either
""" f weather the Initialise tab, the Outputs tab or the Management
4 @ Sackie Script tab visible in the right-hand pane, depending on
i waler the type of module selected
“-3fe pasture '
R stock
..... & supplement Variables becomes visible when the user is editing a management
tab script. It shows the names and structure of all variables
belonging to modules in the simulation.
Events tab becomes visible when the user is editing a management
script. It shows the names and parameters of all events

belonging to modules in the simulation.

6.7 Right-hand pane

This pane has six tabs, although they are never all visible at once:

Initialize |N|:|I:E$ | L.;.ggingl Erere | Initialise tab

?r[I:-S]lEIa_I,Iers EPE | T;'::y [t [zl Becomes visible when the user

& B horizons array selects a module other than a

,, Bl params aay Manager or Output module in the
. 188l evap_alpha a5 double mm.. . A5 Models tab. It shows the initial
. 188l soil_slbedo 017 double 017 Values of variables belonging to the
-- e aray selected module and allows the user
.. el shiow_pack 0.0 double mm 0.0 to change them.

19

Outputs |N|:|tes | LDQEIiﬂQ|

Loak for: Clear [Show selected anly
Simnulation Aggreqgation | Dec. ... |.-’-'-.Iias
B = output
B m manager
[fEl stocking,_rate
|:| teal cfa_vears
b] 8l nio_to_buy
e] te8l group_count
|:| it g
E.] = weather
- [] 8BE name
Manager Secript | Maotes | Logaing | Erors |
l define real stocking rate = 10.0 vethers/ha
2 define real cfa years = 5.0
=
4 ! Replacement
5
6 define real no_to buy
7 define real group count
5 define integer g
« [
[7] Log Manager output to logfile
[7] Log 5et events
Analysis | Maotes | Logging | Errorz |
AJ Analysis ariable | Walus
%% Report - Bl lapers
4 paddock] Bl B horizons
4 - High fertility 5] patams
i Sk = oo oot o
.
P % L aw Fertility : teal zoil_albedo 017
..... A wster (=] s
...... % pasture Lo bl gnow_pack 0.0

20

Outputs tab

Becomes visible when the user
selects an Output module in the
Models tab. It is used to select the
output variables that will be stored
as the simulation executes, and that
can be examined once execution is
complete.

Notes tab

Is always visible. It allows the user
to annotate the Simulation window.

Management Script tab

Becomes visible when the user
selects a Manager module in the
Models tab. It is used to enter the
management script for that module.

Logging tab

Is always visible. Use the options in
the Logging tab to set up error and
trace logging for the simulation.
When trace file logging is turned on
the tab will include an icon as a
visible warning.

Analysis tab

Becomes visible when the user
selected the Simulation module (i.e.
the module at the base of the
configuration tree). It allows the user
to modify the factor levels in a
simulation analysis and to design
one or more reports that will be
generated after the analysis is
executed.

6.8 Configuring and Initialising Modules

The first major step in constructing a simulation analysis in AusFarm is to configure the simulation by
adding the set of component modules in the simulation and describing their inter-relationships.

Before configuring a simulation, the user should consider what set of processes needs to be included
in the simulation to answer the question of interest. The configuration that is chosen should be the
simplest that meets this criterion.

In the example simulation click on the Initialise tab. Fields of records and elements of arrays are
organized into a tree-structure, as shown in the figure below:

Q ChUsers\herl23\Documents\AusFarm'\Example.afs EI@
Tupe: | Histarizal Start: 1.Jan 1970 |:> After processing open
End: 31 Dec1380 | = | |Heport v|
Madels Initialize | Nates | Logging | Ermrors
4@ Example Vatiable | value | Type | Urit | defaukt [min | max | |
t‘ manager El- Bl layers aray -
w DU‘ptuht ... el [1] 15.0 double mm 0o
. @ ;“:;doiL1 ... el [2] 85.0 double mm 0o
ﬂ s - Ieal [3] 1000 double mm 0o
1" ofe pasture .. IEal [4] 100.0 double mm 0o
AP stack - eal [5] 100.0 double mm 0o E
L. supplement - eal [B] 100.0 double mm na
- tEal [7] 2000 double mm 0o
- Eal 8] 2000 double mm 0o
- Ieal [9] 2000 double mm 0o
Bt [l harizons array
-- [l params afray
teal evap alpha 35 double mm/dT05 35 30 45
4 T 3

Select the pasture module and either double click on it or right click and choose the Initialise option.
A Pasture initialisation dialog will appear. Examine some of the settings on this dialog and then close
it by choosing Cancel. Most AusFarm components will give you access to an initialisation dialog that
is customised for the component’s design.

6.9 The Notes and Logging tabs

e Click on the Notes tab in the right-hand pane of the simulation window. This tab contains a memo
control in which you can document the purpose and features of the simulation.

21

g ChUsers\herl2\DocumentstAusFarm' EBxarmple.afs EI @

Type: [Histarical Start: 1Jan 1970 @ After processing open

End: 31 Dec 1980 [& | [Repor 7]
todels |.f5.nal_l,lsis| Motes |Logging I Errors |
4 - Erample E xample simulation with a simple analysis

manager
output
i weather
4 €% paddockl

P stock

L supplement

e Click on the Logging tab in the right-hand pane of the simulation window. This tab contains
options that allow details about the execution of a simulation to be examined once it has been run.
Using the trace option adds significant time to the simulation run and should only be used when
there is an internal problem with the simulation structure that has to be solved.

@ ChlUsers\herl2\Documentst AusFarm' Example.afs El@
Type: | Historical Start: 1Jan 1970 @ Ater processing open
End: 31 Dec 1330 [=3 HF!epolt v]
Models Analysiz | Motes ﬂ Lagging
‘J Example Errars
oM manager [¥] Log errars to file

output

Example_ermorlo
s weather PiE_ d

i paddoc:k'l Meszages
A water '
e pasture Trace messages to file
1 stock Example_trace log

‘o supplement
o [¥] Use component names

Shiaw full mezzage details

Show connection details

[T Lag pracessing times

[T Log from simulated date: 140115970
[[|Loata simulated date: 59 ,12,1580

Yiew log file

6.10 Selecting and Storing Outputs

When a simulation is run, AusFarm can store the values of variables over time so they can be shown
or summarized in a report. Before variables can be used in reports, they must be selected as part of an
Output module.

e Starting with the simulation you created before; Select the Output module by clicking on its icon
(=) in the Models tab of the simulation window.

e The Outputs tab will replace the Initialise tab in the right-hand pane.

22

23

If you want to filter the list of variables by name you can start typing the name in the Look for:
text entry. It is also possible to filter the list to only show the outputs that are selected. These
filters can be used together if required.

g ChlUsersiherl23\Documents\AusFarm\Example.afs

Type : | Historical

hd odels

4@ Example

manager
output
weather
4 - paddockl
: water

33:: pasture
R stack

! supplement

Start :

1Jan 1570
End: 31 Dec 1930

Outputs | Notes | Logging

|::> After processing open

[@ /=)

(2) o

- B

Look for:

Clear

[Shaw selected anly

Simulation

| Aggregation

| Dec. ... | Aliaz

B = output
-- M manager
e weather

El- & paddocki
.. [] &l

.. [] ke

.. [] ahe

name

ype
wergion

.. [] &l
L[]
.. [] &kt
.. [] fit
-] Feal
... [] real
& []E
-] b
-]
... [] el
-] Feal
-] kel

atithor
active

state
allocatar
area

zlope
light_prafile
soil_fract
water_uptake
Covelr_green
cover_tat
hieight

E}ﬂ wiaker

B % pasture

] &kE rname
i T1RBFE hima

Fl

outputs every

Fecard
= Dutput. mdb

-

1 5 |day

Output lacation

m

Browese...

The Outputs tab contains a grid containing variables that are organized into a tree-structure.

=

Click on the expansion button (#) by the Weather module’s icon in the Outputs tab. A list of
the output variables of the module will be revealed.
Scan down through the list of variables and expand the variable named weather to see its

fields.

Check that the COVER_GREEN, COVER_TOT variables are selected for output. Type cover in
the filter text entry.
For the real-valued variables, the number of decimal places to be displayed can be chosen

=

here.

When an array type is selected, all of its elements will be accessible for display.
The “Aggregation” and “Alias” columns can be ignored in most situations.

L[] Feal it

none

canberra.mint

e The output file location can be modified from this tab. It is good practice to have this file name
match that of the simulation file. It is possible to run more than one simulation simultaneously. To
do this the output modules must save their outputs to different files. (Note that AusFarm results
files are actually Microsoft Access data bases, but the data is stored in a compressed binary form.)

e Save the changes to the simulation by clicking the Save button on the toolbar (=). The Save
dialog will not appear as the name for the simulation file is already known.

6.10.1 Exporting results

When using the database output component it is possible to export the results from a simulation or
Analysis run into a single database. This is useful for collating the results from the simulation runs
into a database that can be queried using SQL.

Models Outputs | Notes | 4 Logaing | Emars
‘J Eiamplz Laak far: Clear Shaw selec

i W manager

= | Simulation | Agagregation Dec. .
Initialise Ctrl+I [
Sequence Ctrl+M
Export outputs 4 HDF...
Clear all output selections Firebird...
Cut Carl+X SQLite...
Copy Ctrl+C MSACCESS”'
Paste Ctrl+V
Delete Ctrl+Del

Rename

Diff this compeonent... location

wzsher! 2358ppD atatLocalh T empsO

Help
e —TTT

Right click the mouse on the output component and choose Export outputs. There are three storage
formats available.
6.10.2 Using the TextOut component

If output from the simulation run is preferred in text file format then the TextOut component can be
used. It is available in the model palette. Once this is placed in the simulation, variables can be
selected for this component using it’s inbuilt component dialog that you can access by double clicking
on the component.

Once a simulation has been run and outputs stored in a text file, right clicking on the TextOut
component and choosing View text output, will allow you to open the resulting text file from the
AusFarm user interface.

6.11 Running a Simulation

e The last step before running the simulation is to set the date range over which it is to be run. If

24

you wish you can lengthen the run period.

e This is an Analysis so use this button to execute the simulation.
¢ While the simulation is executing, an indicator appears on the upper pane of its G
window showing the progress of the calculations. 18/10/1961

e The Run button on the upper pane of the simulation window will be replaced by
the Stop button. Clicking the Stop button halts execution of the simulation.

When running multiple simulations with management events, errors or messages being logged then
these must be saved to unique files.

After executing this simulation, the chosen report option will be
displayed. In the example simulation the Report is chosen and the =) | After pracessing apen

preconfigured report will open at the end of the simulation run. =3 [Feport -]
After examining the report, close it. Mothing
Simulation results

The Simulation results option will open the Simulation Results
window in the same way that the main toolbar option does. From there you can choose which outputs
you wish to see.

6.12 The Results Window

The Simulation Results window in AusFarm is used to select results from simulations and to format
them for display in reports.

e Open the Simulation Results window by clicking the Results button (B) on the main toolbar.

ﬁ' Sirmulation Results EI@
Yariables available for repart Wariables selected for report Clear all
El- @ Example Sirnulatian Yariable Agagregation colour
E}- @ High fertility real Example-High fertiity paddockl.cover_oreen Average |1|
E}“%;{ output teal Example-High fertiity paddockl.cover_tat Average | | T

e weather

Eh&i# paddock]

: ’ real cover_green
= real cover_tot

= Qic pasture
B stock Style |Line v| | Chooge custom geries colours
= J Low fertiity Show all series on one chart
B &5 output

Long term average | fram 1Jan to 31 Dec

Time interval 3 Days A

| B Teble | | s Chat || Help

25

All variables available for reporting from all completed simulations are shown in the tree at the left
of the Results window. To see the output files, modules and variables below a node in the tree,
click on the expand button by the node's name. To hide them, click on the collapse button.

Reports in AusFarm come in two kinds: tables and charts. The process for generating these reports
follows the same general set of steps:

Select the variables that are to be presented in the report.
Specify the data treatment that is to be applied to all variables.

Specify the aggregation to be used for each variable within each time interval. This step is only
required if a time interval greater than one day is used.

Click the Chart or Table button to generate a Report window.

6.13 Generating a chart

26

Select the cover_green and cover_tot variables by clicking the check boxes next to their names
in the tree.

Change the data treatment to “Long term average” and set the date range to be 1 Jan to 31 Dec.
Change the time interval to 3 days
Check the “Choose custom series colours” box.

For each selected variable, click on the “Colour” column and select a colour for the variable’s
data.

Click on the “Style” combo box and examine the options. Leave the chart style as Line.

Click the Chart button. A Report window will be generated containing a chart something like this:
02 May 2012 11:53

AusFarm Report

Example High fertility
Long term average [1 Jan - 31 Dec, 1970 - 1980]

Click to edit

-0.0Mmz2 T T T T T T T T T T T
01/01 01/02 01/03 01/04 01/05 01/06 01407 01/08 01/08 0110 1M1 012

— Average(paddocki.cover_green) (av.)
— Average(paddockil.cover_tot) (av.)

Click on the chart. The Edit Chart Properties dialog will appear:

ﬁ' Edit Chart Properties EI@
3D H. Grid W.Grd ¥ Origin [Auto = Legend |Bottom -

1.00 4

0.80

0.60

m*2im*2

0.40 4

0.20

-0.omz T T T T T T T T T T T
01/01 01702 01403 01/04 01/05 01/06 0107 01/08 01/09 0110 01411 01112

— Average(paddocki.cover_green) (av.)
— Average(paddocki.cover_tot) (av.)

o) [)

e If you resize this window or change any chart formatting and then click ok, the changes will be
displayed on the report page. Click on the Edit... button and explore the options for formatting the
chart.

6.14 Generating a table

e Return to the Results window.
e Click on the Clear all button to clear any selected variables.

¢ Add the maxt and rain variables to the selected list. Set the aggregation of the rain variable to
“Sum” and the aggregation of maxt to “Maximum”.

e Choose the Data over period option.

e Click the Table button. A Report window containing annual total rainfalls and yearly maximum
temperatures will be generated:

B Simulation Results EI@
Varables available for report anables selected for report " Clear all |
B @ Example Simulation Yariable Agaregation
B J High fertility teal Ewample-High fertilty weather.maxt bl airriirn IIl
E-&5 output teal Example-High fertilty weather.rain Sum —
EI e weather *
: real mant
[l mint
real rain
& paddockl
B stock Style | Line - Choose custam series colo

B9 Low feriity Show all zeries on one che

% autput
[iata for period - | 1570 o 1980

fram 1dan to 31 Dec

Table | | B Chat || Heb

27

20]an 2014 11:48

AusFarm Report

Example High fertility
Data for period 1/01/1970 to 31/12/1980]

Date Maximum Sum
weather.maxt (max) weather.rain (sum)

oC mm
1970 36.40 722.40
1971 37.70 616.00
1972 38.70 396.10
1973 40.20 755.00
1974 32.60 Q77.00
1975 35.40 771.00
1976 34.60 592.80
1977 37.40 513.00
1978 36.40 771.00
1979 38.70 408.60
1980 37.00 460.40

6.15 Data treatments

The values of variables that are output from an AusFarm simulation can be treated in a variety of
ways. In the Results window, the following data treatments may be selected when producing charts or

tables:

Simple | simple = from [1.Jan 1935 to [31 Dec 1335
A simple presentation just presents the values of the selected output over time.

Long Term ILDng term average j fromm I'l Jan ta |3'| Dec

Average
For each day of year, an average value of the variables is computed over all the years in
the course of the simulation. In a chart, therefore, the X-axis shows days (or months) of
the year, e.g. 1 Jan, 2 Jan etc; the Y-axis gives the values of the output.

Average over IAverage aver yearsj |19T4 to |2E|U3

years from [T Jan to |71 Dec
As for the Long Term Average treatment, but the average values are computed over the
selected range of years from the simulation.

Percentiles [Percenties [=z z[Em x[=2 =

28

from |1 Jan to |31 Dec

The user nominates up to five percentile levels for display.

For each day of year in the nominated range, the output values for all the years in the
simulation are ranked. The value corresponding to each percentile level is then
computed. The values for each percentile level over time are presented as the output

Data for
period

Data over
period

P.D.F. for
period

C.D.F.for
period

29

series.
A point (x,y) on the z" percentile graph should be read as follows:
On day-of-year x a value less than or equal to y will be encountered in z% of years.

The X-axis of a percentile chart shows days (or months) of the year, e.g. 1 Jan, 2 Jan
etc; the Y-axis gives the values of the output.

IData for period j |1E|T4 to |2EIEI3

from I'lJan ta |31 Dec

For this treatment, the user nominates a range of days of the year and also a range of
years.

For each year in the range, an aggregated value is computed over the range of days and
these summary values are presented.

The X-axis for a Data for period graph is the year, e.g. 1978, 1979 etc; the Y-axis gives
the variable values.

To view values for a single day of year, select a time interval of one day in constructing
this range, e.g. 15 Apr to 15 Apr.

IData over period j

from |1 Jan lo |31 Dec

As for Data for period, but summarized over all years in the simulation.

[P-DF forpeiod =] [1974 to [2003

from |1 Apr to |31 Det

P.D.F. stands for probability density function. The Y-axis shows the frequency of
occurrence (0-100%) for each of the classes on the X-axis. The user nominates a range
of days of year. AusFarm then aggregates the selected variables over these days for all
years of the simulation and allocates them to a class. The class boundaries are
determined by taking the range of values and dividing it into five or ten equal classes,
depending on the number of years involved. A PDF graph with value y should be read
as follows:

There is a probability y that the selected output will fall within the class given on the X-
axis.

[COF forpeiod x| [1974 te [2003

from |1.-’-'-.pr to |31 Ot

C.D.F. stands for cumulative distribution function; to be precise, this presentation
shows probabilities of exceedance. The X-axis of a C.D.F. graph shows the range of

output values and the Y-axis gives the probability that in any year, the value of the
output will be greater than a given level. The set of outputs used to estimate these
probabilities is computed as for a P.D.F. A point (x,y) on a C.D.F. graph should be read
as follows:

There is a chance y that the output variable will be greater than a value of x at the
given time of year.

In section 7 we will configure a simple simulation with two key modules (Weather and Output) and
examine the ways that modules can be initialised.

30

7.

CONFIGURING A NEW SIMULATION

In this section the process of creating a new simulation will be shown. It is a simple example but
shows the steps that are required for any simulation.

71

Click on the New simulation button on the main toolbar. -
% =& =N

Give the simulation a unique name. Do this by clicking on the —
name by the simulation icon (@) in the Models tab of the left- —M
hand pane (it reads sim), typing in a new name and pressing Enter.

Beside the simulation’s icon there is an “expand” button (&#). Click on this button to see the
modules that have been included in the new simulation by default. There will be a Manager
module and an Output module.

The Manager module is not required. It can be deleted or left in the simulation without any script
defined for it.

Examine the component palette at the top of the main window. On the palette is a set of icons,

each of which represents a component.

= To see which component is denoted by an icon on the palette, pass the mouse over the icon.
The component name will appear as a hint.

= Right-click on the Weather component icon and select the Info option from the pop-up menu
that appears.

Add a Weather module to the simulation.

= Click on the Weather component icon in the palette.

= Drag it to the simulation icon in the model tree in the Models tab of the simulation window
and drop it there.

Give the new Weather module a name, using the same procedure as for renaming the simulation.
Module names cannot include spaces or periods. If you type those characters they will
automatically be replaced with underscores.

Specifying initial values

The easiest way to specify the initial values of a module is by using its initialisation dialog. Each
component in the default AusFarm distribution has its own dialog.

31

Specify the initial values of the new Weather module.

= Double-click on the Weather module’s icon in the model tree on the Models tab. The
component’s initialisation dialog will appear.

= Choose the Source of the weather data as Locality in locality set.

Choose the 1ocality. set locality set file and select the Canberra (ACT) locality.

= Enter the name of the folder containing the GrazPlan Weather Files in the appropriate edit
control. Use the browse button to open the directory dialog. Find the weather directory under
the AusFarm installation directory.

Brows= | |
Databaze file...

U

|

Biraws

.

Compressed archjve...

— PE— s m—

iz Initialise Weather E\@
Slaligs ol peetie: gl File name [*.zet) c:hprogram fileghausfarmilocality, zet Browse. ..
@) Locality in locality zet]
Single localiy in fle Locality name | Canberra [ACT) - |
Methooess waather file ‘Weather databaze c:\program fileshausfarmiweather M
SILO weather file Augiliary data in path c\program fileshausfarmiweather Browse. ..
@ Standard [COZ2]
Constant [C02]
Wariable [CO2]
[a4] | Cancel | | Help |

= When you have the settings as shown above, click the OK button to leave the dialog.

At this point, the simulation window should look similar to this:
8 Untitled-2 == EoH =
Type : | Histarical Start: 1.Jan 1345 After processing open
End: 1.Jan 2001 Mething -
Models Initialise | Notes | Logging | Emors
‘J sim Y ariable |\r"alue | Type |L|nit |default | Tiir | max | |
i Manager o BBE source <nones shring .

553 \D:;ZL:;er abt filename c:hprogram filesha... strinig
o &hC ol Canberra [&CT) zhiirg
&bt weather_db c:hprogram files'a... sring
&bt weatherpath c:hprogram filesha... strinig
L. @l elevation k] double m k]
- edl wind 0.0 double mfs 0.0
i B8] co2_coeffs array
] 1 3

32

The Initialise tab can be seen in the right-hand pane of the simulation window. It contains a grid
in which each row represents a variable (or part of a variable), and there are columns that display
each variable's type and name, initial value, and (optionally) units, default value, and minimum
and maximum permitted value. The type of each value is shown by the icon next to the variable’s
name.

The initial values (in the "Value" column) can be edited. Press F2 or click twice on a value (leave
a gap between the clicks). This activates an editor that allows you to change the value. (Don’t

change anything now.) Press Enter to deactivate the editor or an arrow key to move to another
value.

Select some outputs as shown previously in the Selecting Outputs section.

Save the simulation by clicking the Save button on the toolbar (=) and completing the dialog
that appears.

Run the simulation by clicking on the Run button.

Examine the results by opening the Simulation Results window.

7.1.1 Comparing initial values of components

It is often useful to compare the initial values for like components in a simulation or between
simulations. Using the clipboard to copy the first component in the model tree and then choosing the
Diff menu option on a second component will invoke a difference viewer.

Firstly: Configure the setting on the Options dialog for the Difference viewer.
COptions @

Set AusFarm Options

General | Advanced

Warigble Initialization Columinz tew Simulation
7 Tupe | Add a Manager component
7 Urit | Add an Dutput compaonent
/| Default
S Mindtdax
Recent files in the menu 10
b odels
Flace newly installed models on the palette tab named
Standard | Show extended hints
External Tools
Text Editor

C:“Program Files [+8E6)\ConTEXTSConTEXT exe

. [Browse... |
Differe al I
C:Program Files [86)"WinMergeWintergell exe

[Browse... |
[Qk. l | Cancel | | Help |

Then from the model tree select a component and then right click and select the Copy option from the
popup menu. Select another component in the model tree of the same type and right click the mouse.
The popup menu will now have an extra option, Diff with.... Choose this option and the external
viewer will show the differences between these components. For Manager script components the text
will be plain text as seen in the Manager Script editor. For other components the SDML script in
XML form will be shown. Although a little cryptic this is still a useful means of checking for
differences.

Because this differencing technique uses data stored in the clipboard, it is easy to do comparisons
between components in different simulations.

33

@ WinMerge - [compl.sdml - Example_comp2.sdml]
=1 File Edit View Merge
O & | |82 o

| comp 1.sdml - Bxample_comp2.sdml |

Toels Plugins

Location O\, ers\herl23\AppData\Local\Tempicompl sdml

Window Help

XF (P ¢\ b4 F DA

Ch..A\AppDatatLocal\Temp'\Example_comp2.sdml

=N B =)

- | &

define
define

real group count
integer g

each 2
{
for g = 1 to stock.no groups

Feb

4 LI

stock.=sell group=g, number=0.2.

3

il I:iefine real stocking rate = 20.0 define real stocking rate = 10.0 -
define real cfa years = 5.0 define real cfa years = 5.0
! Replacement ! Replacement
define real no to buy define real no to buy

define
define

real group count
integer g

each 1
{

Jan

for g = 1 to stock.no groups
stock.sell group=g, number=0,2!

4 (L

Ln:1 Col:1/47 ¢ 1252 Win

Ln:1 Col: 1/47 Ch:

1252

Win

An example of comparing two Manager scripts.

7.1.2 Using APSoil soil data

It is possible to copy the soil descriptions from

Models

|ritizlize | Notes

APSoil directly into AusFarm. This is done
firstly by copying the soil in APSoil to the
clipboard. Then with a paddock component in
the model tree in AusFarm; right click on the
paddock and choose Paste APSOIL.

4 sim Wariable Walug

: Manager] publizhed e...

é E‘:thI:;DtcP > Bl driver_cann..
Initialise Ctrl+1
Sequence Ctrl+N
Add Factor Ctrl+Alt+F
Add System Factor Ctrl+Alt+5
Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Paste APSOIL %
Delete Ctrl+Del
Rename
Diff this component...
Help

e |

Once the soil is pasted on the paddock, new components will be added to the paddock system. The
nitrogen model then needs to be initialised for initial nitrogen values. The soiln initial values are

shown below.

34

@ Untitled-2

Type:

Models

a4

Hiztorical

Fm

M Manager
S output
4 - Paddock
A--'!'u waker
Cbey model
4% sufaceom
C BT mods!
4% nirogen

L At mode]

(=] 8 =)

Start: 1.Jan 1345 After processing open

Initilise | Nates | Logging

W ariable
Camment
z0iltype
oot_cn
root_wk
zoil_cn
en_a_coeff
eni_b_coeff
profile_reduction
oc

ph

fhicm

firvert
no3ppi
rhdppri

rocks

W alue

Black Vertoscl-Mywykilla (Bongeen No001)
Clay

40

1000

off
0.953246153846154 0.95384615328468154 0.961538461538461 0.1
ge8BBB8E

0.04 0.02 0.02 0.02 0.01 0.01 0.01

0.4 0.60.831111
0000000

0000000

The initial values for the cropping modules will need to be set manually as shown below.

ﬁ' ChUsershherl23wbox_share\DAFF_BCGNBCG Mallee farm (19.1.15)_NH.afs

1Jan 1980
End: 31 Dec 1982

Initizlize | Motes | Logging

Start After proc

Mothing

Type: | Histarical

Models

gim P

A || Wariable Walue
----- M constants
_____ M ratations = uptake_source Sandy clay loam
""" M cropping 4 Il 0.140 0.210 0.230 0.260 0.280
----- M livestock
..... e — kI 0.070 0.070 0.070 0.050 0.050
----- M resets eftc wf 1.000 1.000 1.000 1.000 1.000
""" W SD“TmEt'”es ec 0.200 0.200 0.500 0.700 0.700
..... = Dutpul

' \Weather Modifyk L
text_01

text_02

=] tewt 03

----- ® Supplement

a- Bl fam

4 & zandy_loam

] 5 waker

35

7.2 Sequencing the simulation

The components in the simulation will have some default sequenced events triggered during the
execution of the simulation. If multiple Manager components or multiple TextOut components are
included in the simulation, it may be necessary to adjust when their logic is processed within the daily
timestep. Each component can have the timing of its default subscribed events adjusted individually,

but it is also possible to view the whole simulation by right
model tree and choosing Sequence.

clicking the mouse on the top node of the

Type: | Historical Start

Models

End:

@ S\DSTools\AusFarm\AusFarm Training'\Mext workshophUSB\Example

* TJan 1330

¥ Dec 1998

Analysis Logging

P

a @ Mived_Fam il Mmoo
..... M rotations Collapse sub items Ctrl+Left
""" M ciopping Expand sub iterns Ctrl+Right
----- M livestock
""" M grazing Initialise Ctrl+I
: Z::a—ﬁ Sequence % Ctrl+M

Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Delete Ctrl+Del
Rename
Diff this compenent...
Help

55 nitragen || ||

The editing dialog has two tabs. The first one gives a view of the whole simulation ordered by the

sequence number in the timestep.

@ Configure the simulation events

Sequence | Components

o]

part of the tree

To change the default order of these events, just drag them into a different

4@ Sim
@ 0
FE* |
i @ time_zerver, update_time
a - 100

i fﬁ" animals. init_step

i % farm.arable01. clover. init_step
~ &3 farm.arable0.init_step

¥ sfe fam.arablen2.clover.init_step
~ & fam.arablelZ.init_step

< ?i" farm. arable03. clover. init_step
~ &3 farm.arable03.init_step

~ % farm.arable0d. cloverinit steo

¥ sfe fam.arablell.anngrass.init_step

'f Qic farm.arable02. anngrazs.init_step

¥ sfe fam.arable03.anngrass.init_step

< ?i" farm.arable04. anngrazs.init_step

[

ok || cen

cel | |

Help

36

The second tab allows editing of the values. The default value is shown next to each custom value.
The range is from 0-9999. If you want to turn off the automatic sequencing of the event shown, then
uncheck the checkbox in the tree for that event.

In the example below you can see that the summaries management script will have it’s logic
processed after the resets_etc script and before the Output component no matter where it resides in
the model tree.

@ Configure the simulation events E'@
Components

ou can edit the order values by changing the numbers in the "Order
column. To Include any of these eventz in the simulation, check the box nest
to the event name,

Component Events | Order | D efauilt |

- M resets_etc -

do_management 2008 2000
I M summaries
do_management 9338 2000

+- By test_01
+- Bl tewt_02
+ % bt 03
+- e weather
= = Output
update_outputs
+- PR animals
+1- W zilo

=1 gl farm -

3339

IAppI_l,l default orderings‘ [0K l I Cancel I I Help I

Care should be taken when adjusting the sequencing. This can easily ‘break’ your simulation!

37

8. SIMULATION ANALYSES

When the objective of a simulation study requires that a large number of related runs be executed, and
a “base case” simulation has been configured and tested, then the analysis facility in AusFarm is
useful.

The central idea is that one or more of the modules in an AusFarm simulation can be defined to be
factors. Each factor module has one or more sets of initialization data (known as factor levels, on
analogy with field experiments). When a simulation is run as an analysis, every possible combination
of factor levels is used to automatically construct and execute a simulation.

The user can also specify one or more report templates. Each report template describes a set of charts
and tables that compare the results of the simulations in an analysis. When the analysis has been run,
AusFarm uses the simulation results to generate an HTML document containing these charts and
tables.

Note: For modules that are systems, it is possible to define the entire system as the factor. For
example a paddock module is a system.
8.1 Setting up analyses

For example, to test the effect of systematically changing the characteristics of the Paddock module in
a single-paddock system, open the example simulation in example.afs.

B C\Users\herl23\Documents\ AusFarm'\ Example.afs

Start: 1.Jan 1970
End: 31 Dec 1930

¢ Right-click on the Paddock module in
the configuration tree, and select the

Type: | Historical

Add System Factor option from the

Modelz

Initialise | Motes | Logging | Emors

Op-up menu.
pop-up 4@ Erample - High fetity Variable
M manager - Low Fertility o i)
output ... el ar
weather i el sl
4 & paddgek1
= - Collapse sub items Ctrl+Left
. Expand sub items Ctrl+Right
""" & supplg Initialise Ctrl+1
Sequence Ctrl+N
Add Factor Ctrl+Alt+F
Add Systern Factor Ctrl+Alt+5
Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Delete Ctrl+Del
Rename
Help ,_I

e Factor levels contain initialization data. This data can be modified by using the initialization dialogs
or via data entry interface in the Initialise tab, just as for modules in the configuration tree. Change
the name of the new factor to Mid fertility and check that the fertility property of the pasture

module has a value of 0.75 as shown.

38

g Chilsersiherl 23\ Documentsh AusFarm’\Example.afs

Type: | Historical Start :

1Jan 1970
End: 31 Dec1980

E] After proc
E] Simulatio

39

To add an extra factor levels, either select the Add System Factor option again or right-click on one

of the factor levels and select Clone from the pop-up menu.

Once a simulation contains one or more factor modules, the Run Analysis button appears in the top

Modsls Initiise | Notes | Logging | Emars |
4 - Erample - &5 High Fertility % ariable | Walue | T
""" M manager > | pwail - BBE paramm_file <none str
""" output 48y - 800 species Phalariz st
""" G weather e - BB ritrisnts none shr
FE addock] 1 e
é ol ’D’LC pasture - el fertility W dow
water 4
‘2?3 SR o [5] |aypers an
- stack - 8l maw_itdep 700.0 daoc
..... & supplement - Feal |agged day_t -393.9 dao

pane of the Simulation window. Clicking the Run button executes the base simulation, while
clicking the Run Analysis button will set up and execute one simulation for each combination of

factor levels:

g Ch\Users\herl 23\ Documents\AusFarm'\Example.afs

Type: | Historical Skart

1Jar 1970
End: 31Dec 1980

Modelz Initialise | Motes | Lagging | Errors

E After proceszing open

(=[O]wsd

’ =][Heport

- B

4@ Ewample

» &g High fertility
- {6 Mid fertility
> &g Low fertility

" ariable

|Va...| Type | Uit | defailt |

ik

| max

o [allocator
i Pl area

1 integerd
500 double

ha

1
1.0

1
0.0001

3

-

W stock

e W supplement

i real slope

4.2 double © deg

0o 0.0 450

m

Click on the simulation node (Example)
in the model tree and you will be able to
see the complete structure of the

g ChUsers\herl23\DocumentshAusFarm'\Example.afs

Tupe | Historical

Start :

14an 1970
End: 31 Dec1980

AnaIyS|S. todels Analysis | Maotes | Logging | Errars |
414 Example 4@ Analysis
M manager ; M Report

14 pasture
1N stock

@ supplement

:4 % paddock

output
L wieather > -3 High fertility
455 paddock » kg Lo Fertility
P -n water - & Mid fertility

8.2

Run the analysis.

If the Report has been selected as for
output then the report will be displayed.

Open the Results window. The tree of
results now has an extra level; within the
simulation, there is a sub-tree for each of
the simulation runs that was run in the
Analysis, and within each run the same
set of output variables (with different
values) is displayed for selection.

Select the simulation node (Example) at
the root of the model configuration tree.
The Analysis tab will appear, showing
the structure of the entire analysis (i.e.
all factors and their levels).

Right-click on the Analysis item in the
Analysis tab. From here you can add
another report item to the Analysis if
required.

B Simulation Results

Wariables available for report

Waria

B @ Example
El- @ High fertiity
ﬁé aLtpLt
El @ Low fertility
% output
B @ Mid feriity
ﬁé aLtpLt

Simu

4 1dd Analysis
~EER Initialise
a Sequence

B Clone
4 Delete

Rename

Add r[:§0rt

Show report

Ctrl+1
Ctrl+N

' |

Double-click on the existing Report object. The Report Designer dialog will appear. (See the Help
file for details on how to set up charts and tables in reports).

Using Generic modules as factors

Often, the factor in a simulation analysis is used control a management activity, and is therefore
expressed in a management script. In these cases it can be inefficient to make the Manager module
into a factor module, especially if more than one factor in the simulation experiment is implemented
via management rules. In these cases, an elegant solution is as follows:

add a Generic module to the simulation’s configuration;

define a variable within the Generic module and provide an initial value for it;

use this variable in the Manager script, either directly in events (e.g. a stocking rate) or in a
conditional statement or statements that turn particular rules “on” or “oft”;

convert the Generic module into a factor in the analysis.

When using a Generic module for this purpose, it is important to refer to the factor variable with an
unqualified name in the manager script, e.g. stock rate instead of sr _factor.stock rate.

Another way to use the Generic component is as
a system component. It is easy then to use this
system structure as a factor value in an Analysis.
In the example below the Manager script can be
dependent on the location.

40

Iritialize Logaing

a - Beetle Simulation
..... = output
;} CymexBestle
4 -gh Location

b M Manager
- e wieather

a -8k Coolaman
I b anager
. fee weather
a- 2 Beridale
----- M Manager
o v Weather

9. CONFIGURING REPORTS

An AusFarm simulation can contain a number of reports. You can edit each one independently,

adding as many sections such as tables, charts, and grid layouts as you require. See the Help file for
more details.

8 Report Deigner oo s
Report name: Report Descr. Example report
Section Weather information
4 " Report Heading Long term weather
-t Sub heading: Average monthly temperatures and rainfall over the simulation period
For each treatment ub heading: g ¥ Eme "
ff Pasture
& Intake Transform: Long Term Average v]
o] Fleece weight ;
Period type = =
_ F 1Jan to 31Dec
@ Dates rom
(7) One Event
* () Two Events
Variables [Select...] [Remoue] [Clear] [#] Use aggregation captions [] Show horizontal grid lines Chart width
[] show these variables over all treatments Use O as ¥ origin [] show vertical arid lines
Mame Title Description Display Style Colour Aggreg. Units Axis
weather.rain weather.rain rain Yes bar . cBlue Sum mm Right
weather.maxt weather. maxt maxt Yes line . dMaro Average oC Left i:i
weather.mint weather.mint mint Yes line . dMawy Average oC Left
f
4 F
oK l ’ Cancel] ’ Help

Report Designer dialog

9.1 Report Variables

In the bottom table of the Report Designer is a list of the variables that will be used in the selected
report section. Use the Select, Remove, and Clear buttons to manipulate the list of variables in each

report section. You can order the variables using the red up and down arrows

Calculated expressions

By using the £ putton you can add a calculated expression as a column in your table or chart.

41

‘ariables [Select...] [Remnve] [Clear]

Mame |Title |Descri|:uti0n |Displa';.r' |.ﬁ.ggreg. |DecF'I |Llnits |
income_ha Total income Total incomefha Mo Sum 0 t/ha
expense_ha Total expenses Total expensefha Mo um 0 $/ha
income_ha - expense_ha iGrass Margin Annual G Yes none z $/ha

f
< ¥

In the name column for a calculated expression, enter a mathematical expression. It may include the
names of other columns. In this case: income_ha - expense_ha. You can choose whether you want to
display the source columns.

Note: You cannot do any aggregation on the calculated column.

42

10. USING REPOSITORIES

Repositories are used to store module data and management scripts that are used regularly in
simulations.

Items of a similar type can be grouped into folders within a repository. Repository items are
associated with a component. Items associated with the Manager component are treated somewhat
differently to other items.

Examples of items that may be stored in a repository are:

commonly used sets of management rules
an archive of project work for later use

a "library" of commonly used soil descriptions.

10.1 Getting module data from a repository

Close the Results window.

Open the Repository clicking the library button m on the main toolbar.

A Repository window similar to this will open on the bottom of the main window:

¢

4 T} Standard Repository -
| Folder
4 -TJ Custom
) 2009
4| Other
#3 pasture
#3 paddockl
LD wheat
L #3 wheat ~||

m

43

The Repository is divided into two sections. The Custom section is for the user to add to or delete
from while the Standard section contains items that cannot be changed.

Items from the Repository can be dragged into simulations using the mouse.

When you need to add items to the Repository, items can be dragged from simulations and
dropped into folders.

Before you exit AusFarm you will be asked if you want to save any changes you have made to the
Repository.

e To save changes or add folders, just right click the mouse on an item in the Custom section.

X 4 IB Standard Repozitom -
i | Folder
4][] Custar=
)2 Open file...
‘_l D. Save % Ctrl+5S
R Cut Ctrl+ X
L~ Copy Ctrl+C
ol Paste Ctrl+V

Rename [

Delete Ctrl+Del

Mew Folder

New Code fragment

You can also have other custom Repository files. If you right click on the Custom library you can
open another file. If you want to create another custom library file, choose the Open file... option
and type in a new name in the Open file dialog. You will then be asked if you want to create a
new file.

Items from the Standard library section can be copied into the Custom section by just dragging
with the mouse.

10.2 Copying module data to a repository

Drag the icon for the Weather module onto a folder in the repository. A new repository item will
appear.

Select the Weather repository item. The initial values for the module will appear in the right-hand
pane of the repository. These values can be edited in the same way as in the Initialise tab of a
simulation window.

10.3 Copying module data from simulation to simulation

44

Add a second, identical paddock to the simulation:

= Right-click on paddock1 in the Models tab.

Select the Copy option from the pop-up menu that appears.

Right-click on the simulation icon in the Models tab.

Select the Paste option from the pop-up menu that appears. A copy of the paddock system
will appear.

= Rename the new paddock as paddock2.

uud

The same process can be followed to copy module data between two different simulation
windows. Modules may also be dragged and dropped rather than copied and pasted.

11. SPECIFYING MANAGEMENT

Management activities in AusFarm simulations are represented as a series of events that change the
state of the various biophysical models that make up the simulation. For example, irrigation is
represented as an event that changes the amount of water present in the soil profile, and the selling of
livestock is represented as an event that changes the number present of a specific group of animals in
the simulation.

Each component has a defined set of management events that can be applied to it. When and how
these events take place is specified using one or more Manager modules. Each Manager module
contains a management script composed of statements that describe

¢ when and under what conditions events are to be executed;
e which module(s) are to execute an event;
o the parameters that determine exactly what happens when the event takes place.

In the real world, the timing and nature of management activities often depend upon the current state
of the system. For example, irrigations (events) might be scheduled to take place only when the soil
water deficit (part of the system state) is greater than a nominated threshold. Management scripts can
respond to the state of the simulation by accessing variables from the rest of the simulation. The
values of these variables can then be used to specify event parameters and the conditions that
determine whether events take place. They can also be combined into expressions and defined
variables that may then be used in management rules.

e To complete the tutorial open the example.afs file.

e Double-click on the module and examine the Stock initialisation dialog:

| Edit Steck == <

Small Mering

I edium Merino Genotype name Small Mering
@ Sheep Cattle IM
Breed Small b ering - |
Breed standard reference weight 400 kg
Martality 20 Zlvear
\Weaner rmortality 20 Zlyear

MNew Genatype | | Delete Breed potential fleece weight 360 kg

b amirnuinn fibre diameter 1890 o
Fleece yield 70 4
Feak conceptionat C5 21 54 241 30 b4

|] || Cancel || Help

e The Stock dialog shows that two genotypes are described. Close the dialog.

e Examine the management script by clicking on the Manager module in the simulation tree. It
contains a variety of different elements.

45

46

= Definition statements create variables that can be used in other places the script.

! define real stocking rate = 10.0 ! wethers/ha
2 define real cfa years = 5.0
=

= Time specifiers determine when rules should be executed.

18 each 1 Jan
11 §

= References to external variables allow the rules to be influenced by the state of the

simulation.
44 if stock.cond score all < 1.0

= Events change the state of other modules.

=2 stock.=sell group—gy , nunber=stock.number[g]

= Control rules govern the order in which events are executed.

== for g = 1 to stock.no_groups

=1 {
ar if age[g] »>= 365 * cfa years

38 stock.sell group=g , nunber=stock.nunber[g]
29 1

= Assignment statements set the value of defined variables.

31 group count = stock.no groups

12. WRITING MANAGEMENT SCRIPTS

A management script is made up of a collection of statements. The majority of statements define
rules. At each time step, each rule statement in the script is evaluated to determine whether any
management events should be issued to the rest of the simulation for processing.

e The order in which the statements forming a management script are evaluated is not defined. To
ensure that rules are evaluated in a particular order, control rules must be used (see below).

¢ Comments may be placed in a management script, preceded by ! .

e The script editor colour-codes various elements of a script to assist the user in identifying them.
Keywords are shown in dark blue; numeric values and dates in blue; text values in magenta;
event parameters in green and comments in red.

12.1 Using the script editor

12.1.1 Code completion

When typing management script and the name of one of the components is followed by a period, by
waiting for around one second a window will popup showing a list of properties and events that
belong to this component. In the example below you can see a list of the events that can be triggered
in the stock component. Highlight the preferred event in the list using the up or down arrow keys on
the keyboard or use the mouse cursor to select it. By then pressing enter on the keyboard it will be
inserted into the Manager script.

Models Variablelevents Manager Script * | Motes | Logging

4@ Example 18 each 1 Jan -
manager 1 {

iz set stocking rate = SR
13 for g = 1 to stock.no groups

14 stock.sell group—g, number=0.25*stock.number[g]

15 -
16 set g = stock.no_groups + 1 r
i7 set no_to_buy = stocking rate * paddockl.area - stock.number
18 stock.buy genotype='3Small Mering', number=no to buy, sSex='wet

12 stock.tag group=g, value=g+l
za stoc]-:.l
21 3

add_animals genotype= | humber= , birth day=, mit_pearz=, s
22 = subscribed buy genotype= . number= |, sex=, age= , weight=, fleece_wt= , cond_scor
23 =+ subzcrbed castrate aroup= | number= Converts ram lambes to wether lambs, or bull ¢
24 1 Shesri =+ subscribed do_stock Computes development, intake, growith and reproduction of a
TR =+ subzcrbed draft clozed= Aszzigns animals to paddocks
S =+ subscribed dryoff aroup= | number= Ends lactation in cows that have already had th
b L = subscribed init_step

=+ subzcrbed join aroup= | mate_to= mate_days= Commences mating of a particular ¢
[C] Log Manager ¢ =+ subscribed move gioup= |, paddock= Changes the paddock to which an animal grou
[Log Set event:. —# subscrbed prionitise aroup= | value= Sets the 'priority’ of an animal group for later u:
=+ subscrbed sell group= | number= Flemoves animals from the simulation
= subscribed sell_tag tag= . number= Removes animals from the simulation
=+ subzcrbed shear group= | zub_group= Shears sheep
=+ zubzcribed sort Rearanges the ligt of animal groups in agcending order of tag value.
=+ subzcrbed splhit group= | twpe= | value= | athertag= Creates bwo or more animal grou
=+ subscribed tag aroup= | value= Sets the tag value for an animal group -

47

12.1.2 Matching braces
To assist with formatting the Manager script correctly the editor shows clearly the matching braces in

the script. When the cursor is placed on a [, {, or (type of braces the corresponding one is also
highlighted. As shown in the figure below.

Manager Script * | Naotes | Logging

38 gach 20 Dec -
31 {

32 group count = stock.no groups

33 for g = 1 to group count

34 stock.split group=g , tyvpe='age' , wvalue=365 * cfa years

35 h

36 for g = 1 to stock.no_ groups

37 {

35 if age[g] >= 365 * cfa years

29 stock.sell group=g , number=stock.number[g]

4w

41 1 =
4z

43 ! Supplementary feeding

44

45 if =tock.cond =score all < 1.0
< |.m 3

[7] Log Manager output ta logfile

[Log Set events "
e —

12.1.3 Bookmarks

To set bookmarks in the script there is a keyboard combination that performs this task. To set a
bookmark use the key combination, CTRL + Shift + 1. When a bookmark is set you will see a small
number icon in the left hand gutter of the editor. To unset the bookmark, ensure the cursor is on the
line of the bookmark and use the same key combination. You can have up to nine bookmarks on each
Manager editor. Just use the CTRL + Shift + number combination for any extra bookmark.

Once a bookmark has been set in a script, it is easy to go to that line at any time using the key
combination CTRL + number.

Bookmarks are shown in the following figure.

48

= Marger Scrt | Notes | Logaing ¢
4@ Exampls ! define real stocking rate = 10.0 ! wethe
+- M manager 2 define real cfa years = 5.0
autput 2
weather 4 ! Replacement
4 & paddock] c
’ water & define real no to buy
-5f¢ pasture . - =
IH" atock 7 define real group count
: 15 define integer
Ll supplement Jg g g
18 geach 1 Jan
11 4
12 for g = 1 to stock.no groups
12 stock.sell group=g, number=0.25%stoc
14
i gset g = stock.no_groups + 1
18 zet no_to buy = stocking rate * paddoc
17 stock.buy genotype='"Small Merino', num
ﬂ8| stock.tag group=g, value=g+l
12 stock.move group=q, paddock='paddockl'
1
"-h\\‘-'.'-‘\\“"'-\\
"

12.1.4 Checking the script

After writing a section of Manager script it is useful to check that it is written in a well formed
manner. At the bottom of the Manager Script tab is a button that can be used to start a syntax check of
the script. This option will run some initial tests and alert you to any obvious problems before doing a
run of the simulation. This option is highlighted in the figure above.

12.1.5 Inspecting the Management script

While the simulation is running it is possible to log many of the functions performed by the Manager.
By ticking the two check boxes at the bottom of the Manager Script tab and providing a filename for
the log, a list of management details will be saved to file. This is extremely useful for checking that
the management of the simulation is working as expected.

12.2 Time specifiers

Each rule statement has two main parts: a time specifier and a rule. The time specifier denotes the set
of time steps on which the rule is to be evaluated. The time specifier is optional; if it is not given, the
rule is evaluated on each day of the simulation.

Examples of time specifiers are:

on 1 Apr 1980

each 25/7

from start to 31 Dec 2001 repeat 7 days
from 15 Feb to 15 Apr repeat 1 month

single date

25 July in each year
weekly from the start date
weekly

e When giving a date or day-of-year in a time specifier, the month may be given as either a month
number (1 to 12) or as a three-letter abbreviation. Years should be given with four digits.

49

12.3 Rules

Rules come in four main types:
e Event rules cause management events to be transmitted to the rest of the simulation.
e Assignment rules change the value of a variable.

e Control rules are used to control the order in which other rules are executed. There are four kinds
of control rule: rule lists, conditional rules, FOR loops and WHILE loops. Every control rule
contains one or more sub-rules, which may themselves be control rules. A rule statement may
therefore be made up of a nested set of rules, as shown in the examples below.

e Subroutine calls, used in conjunction with subroutine definitions, can be used to invoke
combinations of rules that may need to be used repeatedly.

12.3.1 Event rules

An event rule is specified by giving the name of the event together with zero or more parameters,
which are separated by commas. The number of parameters and their types depend upon the event
(see section 16 for details). The event name may need to be qualified to inform the simulation which
module (e.g. paddock or pasture species) it is to apply to.

It is the rule-writer’s responsibility to ensure that events are specified with the correct parameters and
that parameter expressions are of the correct type.

Parameter values may be given as constants, but they may also be given as expressions that are
evaluated to provide the value of the parameter (see section 15.3).

When specifying an event, it is usually possible to give fewer parameters than set out in section 16. In
this case the remaining parameters are assigned a default value which is usually zero, FALSE or the

null string according to type.

Examples of event rules are:

paddock3.ryegrass.sow 10.0 ! Note use of qualifier

move 2 'paddock3’ ! Unqualified - only livestock have "move"
! Note the single quotes around the string

buy 'wethers', 1l0*paddockl.area, 18.0, 50.0 ! No parameter names-legal but difficult to
! read. Note the use of an expression in a
! parameter.

12.3.2 Assignments

Assignment rules change the value of a variable. This variable may be one that has been defined
within the manager script (see section 3.4) or it may be one of a subset of state variables that may be
reset from the manager. Assignment rules take the form

set name = value variables defined within the manager script

reset name = value state variables of other modules

50

where name identifies the variable and value is an expression that gives the new value for the
variable.

e Itis the rule-writer’s responsibility to ensure that the name refers to a variable defined within the
management script, and that the value is of a type that is compatible with the variable to which it
is to be assigned.

Examples of assignments are:

set x = 10.0

set w = w + number[i] * weight[i] ! Part of getting a weighted average
set pasw([i] = 0.0 ! Assignment to an array element
reset paddockl.clover.fertility = 0.85 ! Assignment to an external variable

12.3.3 List rules

List rules group one or more rules together, ensuring that they are evaluated in sequence. A list rule is
formed by surrounding the sub-rules with curly braces {} and separating the sub-rules, either with a

semicolon or by placing them on separate lines.

An example of a list rule is

set x = 99.0 ! A rule on its own line
set g = 6; set p = 'paddockl' ! Two rules, separated by a semi-colon
move g, P ! Same as "move 6, 'paddockl'"

It is possible for list rules to be nested several levels deep; as a result it is usually worth while to
indent them neatly.

12.3.4 Conditional rules
Conditional rules take one of two forms:

if condition sub-rule
if condition sub-rulel else sub-rule’?

The “condition” is an expression that evaluates to a logical value (TRUE or FALSE). When the rule is

evaluated, the value of the condition is computed. If it is true, then the first sub-rule is evaluated.
Otherwise, if the else keyword and second sub-rule have been given, the latter is evaluated instead.

If the condition is false and there is no second sub-rule, then the manager moves on to the next rule.

e Expressions with numeric values can be used as the condition in a conditional rule. In this case,
any value other than zero is taken to mean TRUE and a zero value is taken to mean FALSE, in
accordance with the type-conversion rules.

e If the first sub-rule is not a list rule, it must be placed on a new line.

51

Examples of conditional rules are:

if x < 10.0 { set x = 10 } ! Same as "set x = max(x, 10.0)"
if b ! OK to put sub-rules on a new line
paddockl.water.irrigate amount=20.0 ! This is sub-rulel
else
paddockl.water.irrigate amount=10.0 ! This is sub-rule2
if sheep.tag no[i] =1 ! Here the sub-rule is a list rule
{
sheep.shear group=i ! Sell animal group "i" off-shears
sheep.sell group=i, number=sheep.number[i]

} Neatly indented...

12.3.5 FOR loops
FOR loops take the form:
for variable = start to end sub-rule

In this rule, variable must be an integer variable defined within the manager script, and start
and end are expressions that should evaluate to integer values. When the rule is evaluated, the values
of start and end are evaluated. The sub-rule is then evaluated repeatedly, with the nominated
variable set in turn to each of the values start, start +1 ... end.

o If the sub-rule is not a list rule, it must be placed on a new line.

e If the value of start is greater than the value of end, the sub-rule is not evaluated.

e Itis inadvisable to set the value of the control variable within a FOR loop.

e Atthe end of the FOR loop, the value of the control variable will be set to end+1.
The examples of the FOR loop shows how to handle two common situations:

= the case where a task must be performed for each group of animals in a Stock module
= the calculation of a summary variable from one or more arrays.

for i = 1 to animals.no_groups
sheep.move group=i, paddock='paddock2'

set pasw = 0.0

for i = 1 to no layers ! Will only work for a single-paddock
{
set layer asw = max(0.0, sw dep[i]-1115[i]) ! system (variables are unqualified)
set pasw = pasw + layer asw ! Sum over layers of "layer asw"

}

12.3.6 WHILE loops
WHILE loops take the form:
while condition sub-rule

The condition is an expression that evaluates to a logical value. When the rule is evaluated, the value
of the condition is computed. If it is TRUE, then the sub-rule is evaluated. The condition is then

52

evaluated once more, and if it is still TRUE, then the sub-rule is evaluated again. The sub-rule is
repeated until the condition evaluates to be FALSE. If the condition is FALSE when it is first
evaluated, the manager moves on to the next rule.

e Itis the rule-writer’s responsibility to ensure that the sub-rule will eventually cause the condition
to become FALSE. If not, the loop will continue to be evaluated indefinitely and the program will
have to be terminated from the Task Manager.

e Because of the above, it is usual for the sub-rule in a WHILE loop to be a list rule.
o If the sub-rule is not a list rule, it must be placed on a new line.

An example of a WHILE loop is:

set 1 = 10
while i > 0
{
set x = x i
set i =1 - 2 ! Change a term in the condition...

}

12.3.7 SUBROUTINE calls

Subroutines may be defined which allow a group of rules to perform a specific task while remaining
relatively independent of other portions of the code. Parameter lists may be used to transfer values to
a subroutine; within the subroutine, the parameters are treated as const variables. Although one
subroutine may call another, recursion is not supported (that is, a subroutine may not call itself).
Rules within subroutines may access variables defined within the manager script and “external”
variables from other modules, just as ordinary rules may do. Additional variables may be defined
within a subroutine; such variables have “local” scope and may be used only within the subroutine
where they are declared.

SUBROUTINE definitions take the form:

subroutine subroutine-name (parameter-1list) { rule-1ist }
Calls to a subroutine take the form:

call subroutine-name parameters

An example of a subroutine definition and subsequent call is

subroutine join ewes (ram breed: string; no days: integer)

{

define integer group ! A variable of local scope, used as a loop counter
for group = 1 to animals.no_groups
if (animals.tag no[group] = MATURE EWE)
animals.join =group, =ram breed, =no days

}

each 1 Mar
call join_ewes = 'Small merino',

30 ! Parameters values are passed
! to a subroutine by using
! the same syntax as event rules

53

12.3.8 Indirection

Indirection is useful for referring to entities such as modules or module properties or events based on
a list of text values. The @() operator converts a text string into a reference to a module or property.

In event names:

@ (module-name-expression) .event
In expressions:

@ (variable-name-expression)

Indirection is almost always used inside an iteration and/or a conditional statement that provides the
context.

Picking out a module in a particular paddock in order to perform an event on it

padd name[1]
padd name[2]
padd name[3]

for padd = 1 to 3
@ (padd name[padd]) .grass.kill propn herbage=1.0, propn seed=0.0

Building arrays of summary variables across paddocks

for padd = 1 to no_paddocks

{
set padd deep drain[padd]
set padd_cover [padd]

@ (padd_name[padd] &'.water.model.drain')
@ (padd name[padd] &'.cover tot')

}

124 Event Handlers

By default, management rules are evaluated at each time step of the simulation, but it is also possible
to define sets of rules which are evaluated in response to events issued by other components within
the simulation. Data associated with the triggering event are passed to the handler via a parameter list.

Units of measurement may be specified for each parameter. The declared data types and units of
parameters must be compatible with those provided by the component sending the event.

EVENT HANDLER definitions take the form:

on_event event-name (parameter-1list) { rule-list }

54

Here is an example of an event handler:

define real avgt
define real peak radn = 0.0

v 0o

on_event Weather.newmet (today:real; radn:real 'MJ/m"2'; maxt:real 'oC'; mint:real 'oC';
rain:real 'mm'; vp:real 'hPa') NOTE: The entire parameter list must be on a
! single line. It is shown here as wrapped only to
! allow it to fit within the page

set avgt = (maxt + mint) /2.0 ! Calculate a daily mean temperature in response to a
! "newmet' event

! Keep track of the maximum radiation received

!

! on a single day

set peak radn = max(radn, peakradn)

12.5 Expressions

As described above, various elements of rules may be given as algebraic expressions. Expressions are
constructed using constants, variables, operators and functions

12.5.1 Constants

¢ Real-valued constants may be given in decimal or exponential format (e.g. 1.34,
6.77E-2).

¢ Integer-valued constants are given in decimal format (e.g. 999, -1).

e Text strings are always surrounded by single quotes (e.g. 'Hello, world"). The quotes distinguish a
text string from a reference to a variable.

e Logical constants are given as TRUE or FALSE (case-insensitive).

e Itis possible to have constant values that are arrays. Each element of an array should have the
same type. To denote an array, surround it with square brackets [] and separate each element with
a comma:

define real array = [0.5, 0.6, 0.7, 0.8, 0.9]
define fox array = [['quick', 'brown',6 'fox'],
['"jumps', 'over', 'the', 'lazy', 'dog'l 1

Note that in the second example, the array elements are themselves arrays, making a two-
dimensional array. (Note also that the sub-arrays need not be of the same length!)

e Avalue may also be a structure, i.e. a collection of named sub-values called fields. To denote a
structure, surround it with brackets (), precede each field with its name followed by a colon, and
separate fields with semi-colons:

define struct var = (text field: 'quick'; real field:99.9; array field:[1,2,3,4])

55

12.5.2 Variables

Variables in expressions are referred to by name. A variable may be defined within the manager (see
section 3.4) or it may be any variable that can be accessed from the rest of the simulation (see section
5). Variable names may need to be qualified in the same way as event names.

The elements of an array variable or the fields of a structure variable can be referred to using the
forms array[index] and structure: field respectively. Since elements in arrays and fields
in structures may themselves be arrays or structures, these references may be nested:

seeds[3] :unripe soft ! Field "unrip soft" within element 3 of "seeds"
fooli,] ! Same as foo[i][7F]

12.5.3 Operators
The following operators may be used in expressions:

Arithmetic operators

+ Addition Numeric (integer if both arguments are integer, real otherwise)
- Subtraction Numeric (integer if both arguments are integer, real otherwise)
* Multiplication Numeric (integer if both arguments are integer, real otherwise)
/ Division Real

A Power Real

mod Modulus (remainder) Integer

div Integer division Integer

Relational operators

= Equal to Logical (TRUE or FALSE)
/= Not equal to Logical
< Less than Logical
> Greater than Logical
<= Less than or equal to Logical
>= Greater than or equal to Logical

Logical operators

and And Logical
or Or Logical
not Not Logical

56

Text operator

&

Concatenation Text

Brackets () may be used to govern the order of evaluation of operators.

57

It is the rule-writer’s responsibility to avoid invalid arithmetic operations such as divisions by
ZEro.

12.5.4 Functions

A variety of functions are also defined for use in expressions. Arguments to functions may themselves
be expressions. They are separated by commas, as in the following examples:

max(-3, min(3, 1))
upper ('abc')
average (x[1], x[2], x[3], x[4])

average (x) ! Same as the previous one

Arithmetic functions Returns

max() Maximum Integer if all arguments are integer, real otherwise
min() Minimum Integer if all arguments are integer, real otherwise
sum() Total Integer if all arguments are integer, real otherwise
Average() Arithmetic mean Real

exp() Exponential (e¥) Real

In() Natural logarithm Real

sin() Sine Real

cos() Cosine Real

atan() Arctangent Real

round() Round to nearest integer Integer

floor() Integer next below Integer if argument is integer, real otherwise

Text functions Returns
max() Maximum Text

min() Minimum Text

upper() Uppercase Text

lower() Lowercase Text

str() Convert the value to text. Text

Optional second argument can be a format string or an integer. An
integer will specify the number of decimal places to display in the
converted value.

Format string: ‘4.3f” or ‘2d’ where d is used for representation of
integer arguments and f for floating point values.

length() Count the number of elements in an array. Integer
| Date functions _Returns
dayofyear() Return the day number of the year where Jan 1 = day 1. Integer
e.g.

dayofyear(‘1-Jul’)

dayofyear(‘Dec-317)

dayofyear(’12 Aug 1961°)

Where delimiters can be “-“ or * © or ‘/°
Month names must be the first three characters from the English
month name.

The Year must be four digits. Where the year is not specified a
non-leap year is assumed.

o If the expression parser encounters an argument to a function or operator that is not of the
required type, it will attempt to convert it according to the following rules:

58

From To

Real Integer The value is rounded off.
Real Logical ~ The value will be converted to TRUE if non-zero and to FALSE if zero.
Real Text If the absolute value is less than 0.000001, the value is converted to a

string using exponential format (e.g. 1.23763567E-8). Otherwise it is
converted using decimal format, with enough decimal places to ensure that 6
significant figures are displayed. At least one decimal place is always given.

Integer Real The same value is returned.

Integer Logical The value will be converted to TRUE if non-zero and to FALSE if zero.

Integer Text The value is converted to its decimal representation.

Text Real The string value will be parsed into a number. If it cannot be parsed, the
simulation will halt.

Text Integer As for text-to-real conversion.

Text Logical ~ The value will be converted to TRUE if the string equals ' true' (case-
insensitive) and to FALSE otherwise.

Logical Real TRUE is converted to 1.0 and FALSE t0 0. 0.

Logical Integer TRUE is converted to 1 and FALSE to 0.

Logical Text TRUE is converted to ' true' and FALSE to ' false'.

e Variable values are obtained from the rest of the simulation as the expression of which they form
a part is evaluated. As a result, if a variable value changes in response to a manager event, its
value in any expressions evaluated subsequently will be the altered value, even within the same
time step.

12.6 Definition statements

As noted above, expressions may use variables that are defined as part of the manager script. Before
such variables are used, however, they must be defined using a definition statement.

A definition statement begins with the keyword de fine, followed by one or more variable
definitions separated by semi-colons. Each variable definition consists of a variable name, which may
be preceded a type specifier, and followed by an initial value for the variable. The definition may
further be preceded by one of the qualifiers const or volatile. If the const qualifier is present,
the variable must be assigned an initial value; otherwise, the type specifier and initial value are
optional. Any subsequent attempt to modify the value of a variable defined with the const qualifier
is regarded as an error. The volatile qualifier is used to indicate that the value of the variable may
be set by other components.

An initial value for a defined scalar variable can be the result of an expression. Using an expression
such as a function like DayOfYear() is a typical use. See an example below.

Type specifiers are made up of one of the keywords real, integer, text or boolean,
optionally followed by one or more array lengths surrounded by square brackets and separated by
commas (see below for examples)

e Itisan error to define the same variable name more than once within a single manager script. The
only exception is that a “local” variable may be declared within a subroutine using the same name
as a variable outside the subroutine. When this occurs, all references to that variable name within
the subroutine refer to the “local” variable.

59

e [favariable name is defined within the script that is the same as an “external” variable, the name
will be taken to refer to the manager variable when it is used in expressions.

e If the type specifier is omitted, the type is inferred from the initial value. If no initial value is
given, the type of the variable is taken to be the same as that of the preceding variable in the list
of definitions. For the first variable in a list, it is taken to be a real number.

e The initial value is preceded by an equals sign. It is specified in the same way as a constant in an
expression (see above).

e If no initial value is provided, then the initial value of the variable is set as follows:
= numeric values are set to zero
= text values are set to the empty string
= logical values are set to FALSE.

Here are some examples of definition statements:

define x = 0.0

define x ! Same as the previous definition

define integer i; j; k ! All are integers

define integer m; n; text t ! Different types within one statement

define breed = 'Angus' Text variable (type inferred from initial value)

which may be set by other components

!

define volatile z = -999 ! Integer variable (type inferred from value)
!
! Real constant

define const real pi=3.1415926

define const integer sow date = DayOfYear ('l-May’)

define real x arr([20] ! Array of real numbers

define real y arr = [9.0,8.0,7.0,6.0] ! Also an array of real numbers

define real array2d[100,100] ! 2-dimensional array

define struct = (a:9.0; b:5; c:'STRING') ! A structure has to be defined using an initial
! value

12.6.1 Advanced initialisation of variables

Variables and constants can be initialised with the results of expressions.

For example:

15

16 define text file prefix = 'c:i\tempi\SimpleMixed'

17 define real file wersion = 1.0

1z -

1? define const string file name kbase = file prefix & ' v' & str(file wversion, '3.11")

2a

21 define const integer join start = DayOf¥ear('l-Feb') ! Joining day-of-year for shesp (1 Feb)

22

When initialising complex variables it is now possible to use expressions to set values. This can be
done within arrays of records.
These are valid:

4 define test = (fieldl: [sin(20), 901 * 34.58] ; fieldZ: 'Mathematical')

5]

& define test2 = (fieldl: [Day0fYear('l-Mav'), 222] :; field2: (subfieldl: cos(45); subfield2: 3.2)})
T

60

When initialising an array, each successive element will be assumed to follow the type of the first
element. For example:

z
3 define test_array = [93.23, 3, 5] ! fleating peint wvalues
4

5 define test_array2 = [56, 34.012, 4] ! this is invalid as

-

ot
¥
m
g
m
5]
8]
s}
[*}
m
[
m
=]
m
=]
ot
3]
u
=]
ja i
]
ot
b
m
%]
ot
Is]
H
1]
£,
f
A
i

n integer

12.6.2 Using constants as array size specifiers

When defining the size off arrays it requires the integer value of the number of elements. If an integer
constant is declared in the script previously then this constant can be used in the place of the literal
integer.

define const integer padd count = 10 ! Integer constant
define string paddock names[padd count] ! Use integer constant as array size

12.7 Examples of complete statements

Here are some valid manager statements for a simulation with components called paddock1,
soilwater, subclover, ryegrass, and merinos:

define x = 100; y; z ! v & z are initialised at zero
define text nextpadd
define some sw = [0.10,0.12,0.15,0.22, ! Array of real numbers, split over two lines

0.30,0.30,0.30,0.34]

from start repeat 1 months ! Another rule would set "nextpadd"
{ merinos.move nextpadd }

on 1 apr 1980 ! Use a defined variable to trigger an event
{
set z = subclover.green dm + ryegrass.green dm
if z > 700
{
merinos.buy 'wethers', number=10*paddockl.area, age=18.0, weight=50.0
merinos.move group=merinos.nogroups, paddock='paddockl'
}
}
each 15 dec ! Shear all sheep at least a year old
for i = 1 to merinos.no _groups
if merinos.age months[i] > 12
merinos.shear group=i
paddockl.soilwater.irrigate amount=pet - rain ! Daily irrigation

A more complete set of examples can be found in the AusFarm User Notes documents.

61

13. MANAGEMENT EVENTS SUMMARY

Stock component

buy

sell
shear
join
castrate
wean
dryoff
move
split
tag

Sort

Buy animals into the simulation

Sell animals out of the simulation

Shear (sheep only)

Commence mating

Castrated unweaned male lambs or calves
Wean some or all unweaned lambs or calves
End lactation in cattle

Assign a group of animals to a paddock
Divide a group of animals into two groups
Assign a “tag value” to a group of animals

Sort the list of groups of animals by tag value

Supplement component

buy
feed
reset

Soil Water component

irrigate

Pasture component

sow
sSpraytop
kill
cultivate
conserve

Cashbook component

earn
spend

report

62

Purchase supplement
Place supplement in a paddock

Removes all residual supplement from a paddock

Add irrigation water to the soil

Sow seed of the pasture species

Crude analogue to spraying this species with glyphosate
Kill herbage of this species only

Incorporates herbage and seeds into the soil

Removes herbage and (optionally) stores it in a Supplement module

Acquire cash
Spend cash

Write a gross margin report

Contact Us

Phone: 1300 363 400
+61 39545 2176

Email: enquiries@csiro.au

Web: www.csiro.au/flagships

CSIRO and the
Flagships program

Australia is founding its future on science and
innovation. Its national science agency, CSIRO,
is a powerhouse of ideas, technologies and
skills. CSIRO initiated the National Research
Flagships to address Australia’s major research
challenges and opportunities. They apply large
scale, long term, multidisciplinary science and

aim for widespread adoption of solutions.

