

CSIRO AGRICULTURE

AusFarm – A Tutorial

Tutorial version 1.9

Jan 2015

Enquiries should be addressed to:

Neville Herrmann

CSIRO Agriculture

GPO Box 1600

Canberra ACT 2601

grazplan@csiro.au

Copyright and Disclaimer

© 2015 CSIRO To the extent permitted by law, all rights are reserved and no part of this

publication covered by copyright may be reproduced or copied in any form or by any means

except with the written permission of CSIRO.

Important Disclaimer

CSIRO advises that the information contained in this publication comprises general statements

based on scientific research. The reader is advised and needs to be aware that such information

may be incomplete or unable to be used in any specific situation. No reliance or actions must

therefore be made on that information without seeking prior expert professional, scientific and

technical advice. To the extent permitted by law, CSIRO (including its employees and

consultants) excludes all liability to any person for any consequences, including but not limited

to all losses, damages, costs, expenses and any other compensation, arising directly or

indirectly from using this publication (in part or in whole) and any information or material

contained in it.

v

Contents

1. Introduction ... 7

1.1 AusFarm ... 7

1.2 Purpose of Document ... 8

2. Components, Modules and Systems ... 9

2.1 Components ... 9

2.2 Modules .. 9

2.3 Systems .. 10

3. Variables .. 11

4. Events .. 13

4.1 Management events ... 13

4.2 Sequenced events .. 13

5. Using AusFarm .. 15

6. Getting Started .. 16

6.1 Installing AusFarm .. 16

6.2 Running AusFarm ... 16

6.3 The Main Window ... 17

6.4 A Tour of the Simulation Window ... 17

6.5 Upper pane ... 18

6.6 Left-hand pane .. 19

6.7 Right-hand pane ... 19

6.8 Configuring and Initialising Modules ... 21

6.9 The Notes and Logging tabs ... 21

6.10 Selecting and Storing Outputs .. 22

6.10.1 Exporting results ... 24

6.10.2 Using the TextOut component .. 24

6.11 Running a Simulation .. 24

6.12 The Results Window ... 25

6.13 Generating a chart .. 26

6.14 Generating a table .. 27

6.15 Data treatments .. 28

7. Configuring a NEW simulation ... 31

7.1 Specifying initial values ... 31

7.1.1 Comparing initial values of components ... 33

7.1.2 Using APSoil soil data .. 34

7.2 Sequencing the simulation .. 36

vi

8. Simulation Analyses ... 38

8.1 Setting up analyses ... 38

8.2 Using Generic modules as factors .. 40

9. Configuring Reports ... 41

9.1 Report Variables ... 41

10. Using Repositories ... 43

10.1 Getting module data from a repository .. 43

10.2 Copying module data to a repository ... 44

10.3 Copying module data from simulation to simulation ... 44

11. Specifying Management ... 45

12. Writing management scripts .. 47

12.1 Using the script editor ... 47

12.1.1 Code completion ... 47

12.1.2 Matching braces .. 48

12.1.3 Bookmarks .. 48

12.1.4 Checking the script ... 49

12.1.5 Inspecting the Management script .. 49

12.2 Time specifiers .. 49

12.3 Rules ... 50

12.3.1 Event rules .. 50

12.3.2 Assignments ... 50

12.3.3 List rules .. 51

12.3.4 Conditional rules ... 51

12.3.5 FOR loops ... 52

12.3.6 WHILE loops ... 52

12.3.7 SUBROUTINE calls .. 53

12.3.8 Indirection ... 54

12.4 Event Handlers .. 54

12.5 Expressions ... 55

12.5.1 Constants .. 55

12.5.2 Variables ... 56

12.5.3 Operators .. 56

12.5.4 Functions .. 58

12.6 Definition statements... 59

12.6.1 Advanced initialisation of variables ... 60

12.6.2 Using constants as array size specifiers ... 61

12.7 Examples of complete statements .. 61

13. Management Events Summary... 62

7

1. INTRODUCTION

1.1 AusFarm

AusFarm is a software tool that allows problems to be analysed with simulation models of physical

and biological systems. AusFarm is highly generic, but it has been built primarily to assist decision-

making in agricultural enterprises at scales ranging from paddocks to whole landscapes.

The AusFarm software contains powerful facilities for analysing risk over both the short- and long-

term.

Simulations in AusFarm have the following features:

Modularity Instead of a single program that contains the entire "AusFarm model",

simulations in AusFarm are built up from smaller elements known as

components that describe parts of a biophysical system.

For example, the standard AusFarm distribution includes one

component that handles weather data, and another that describes the

dynamics of grazing ruminants.

Separating the parts of a model that are closely related into sub-

models has advantages during model development, for software

maintenance, and in the deployment of up-to-date versions of models.

It also means that models from groups other than CSIRO Plant

Industry can be used within AusFarm.

Configurability Once a simulation model is decomposed into components, it becomes

natural to arrange the sub-models in configurations that reflect a range

of different real-world situations.

The practical advantages are that an AusFarm user can put together

the simplest model required to analyse a given problem, and can use

multiple copies of a model component within a simulation (for

example to represent the flows of soil water in each of several

paddocks).

Interchangeability Modular construction also permits substitution of one representation

of a process by another, depending on the needs of the user. This can

be useful in comparing different representations of a process, or in

configuring a simulation for efficient execution.

Representation of

both continuous and

discrete processes

Many processes in agricultural systems are fundamentally continuous

in nature. Others, particularly management interventions, involve

sharp changes in the state of the system, which may be thought of as

instantaneous events. AusFarm can accommodate both continuous and

discontinuous processes.

8

Hierarchical

structure

Ecological and hence agronomic systems contain too many entities to

be solved analytically by differential-equation techniques, and they

have too few entities to be treated as statistical assemblages. Current

ecological theory suggests that the best way to analyze this kind of

complexity is to take advantage of the hierarchical organization in

these systems that arises from differences in the rates of different

processes. Simulations in AusFarm can be configured to capture such

hierarchical structure.

AusFarm has been developed by CSIRO Plant Industry. The standard distribution includes a set of

models, also developed by CSIRO Plant Industry, that enable simulations of grazing enterprises

located in temperate southern Australia.

1.2 Purpose of Document

This document has three main parts:

 Sections 2-5 are an introduction to the concepts used in AusFarm. The reader should understand

these concepts before proceeding

 Sections 6-14 are a software tutorial.

 Sections 15-16 provide detailed information about how to write management scripts and about the

management events of components in the default AusFarm distribution.

More information about the subjects covered in this document may be found in the AusFarm Help

file.

9

2. COMPONENTS, MODULES AND SYSTEMS

2.1 Components

In AusFarm, model logic is contained within entities called components. Each component corresponds

to a sub-model, i.e. a set of variables, equations and events that are inter-related. For example, the

standard distribution of AusFarm contains a Soil Water component that contains the logic for a soil

water budget, and a Stock component that contains the GRAZPLAN ruminant biology model.

Some components can be thought of as "utilities" - they perform tasks that are not part of the model in

a narrow sense (i.e. as a mathematical entity) but are vital to making the model useful. An example of

a utility is the Output component, which allows the user to store the results of simulations for later

interpretation.

Each component is implemented as a Windows dynamic link library (DLL). Before a component can

be used in a simulation, it must be installed on the component palette.

2.2 Modules

A module is a specific instance of a component within a

specific simulation. A simulation may contain several modules

that are instances of the same component. For example, in the

simulation structure at right, there are two modules that are

instances of the Soil Water component, and six that are

instances of the Pasture component.

A module can only exist as part of a simulation. The set of

modules in a simulation is defined by adding them to the

simulation tree in the Models tab of the simulation window.

This process is known as configuring the simulation.

From the point of view of an AusFarm user, each module is

made up of the following elements:

Name A module's name is supplied by the user via the Models tab. It is used to refer

to the module and its variables or events, for example when writing the

management script. Each module has a short name (e.g. "Annual_Ryegrass")

and a fully-qualified name that is defined by the systems to which it belongs

(e.g. "Paddock_2. Annual_Ryegrass "). The short name need not be unique,

but the fully-qualified name must be unique.

10

Initialisation

Variables

contain the values that must be known to set up a module.

Driving Variables contain values that are not part of the module, but must be known to calculate

its equations.

Output Variables contain values that can be stored for later viewing and analysis, and/or used in

management scripts to control the course of the simulation. (Initialisation

variables are usually also available as output variables).

Sequenced Events contain the rate equations of the module, i.e. the main model logic. Each

sequenced event is computed once per time step. AusFarm handles the setting

up of sequenced events automatically.

Management

Events

can be invoked as part of management scripts to change the module's state in

some way.

2.3 Systems

The modules in each simulation are arranged, not in a simple list, but in a tree. Each sub-tree of this

structure is known as a system, and the module at the "root" of a sub-tree is called a system module.

The simulation structure above has three systems: the system made up of Paddock_1 and its child

modules, the system made up of Paddock_2 and its child modules, and the entire simulation. Only

certain components can act as system modules. In the default AusFarm distribution, only the Paddock

component can be used to form systems.

11

3. VARIABLES

In AusFarm, the variables of each component are used to represent the quantities used in the

equations and events that the component embodies. A “variable” in AusFarm includes a wide range

of quantities from a modeller's point of view, including:

State variables Quantities that may vary in time as the simulation is computed. The value of a state

variable must be known in order to compute the dynamics of the module to which it

belongs.

Constants Quantities that are (i) invariant in time and (ii) have the same value in all modules

of all simulations.

Parameters Quantities that are invariant in time, but may take different values in different

modules, either within a simulation or between simulations.

Driving

variables

Quantities that are stored externally to a given module but must be known in order

to compute the dynamics of the module. They may (and usually do) vary in time.

Each driving variable must have one or more sources; a source must be an output

variable from another module.

Output

variables

Quantities that may be accessed by other modules in the simulation, including for

storage as results or for use in management scripts. Output variables may be state

variables, constants or parameters, but may also be "summary" variables computed

from them.

The variables that drive the simulation as a whole (e.g. weather data) also appear as

the output variables of modules that read them in.

Every variable in AusFarm has a name, a type, and a value. When referring to a variable, its name

may be qualified to ensure that the reference is not ambiguous: for example, the sw variable within

the paddock3.water module may also be referred to as paddock3.water.sw.

The value of a variable can change through time as the simulation is executed. The initial value of

each state variable and parameter must be provided by the user in order for the simulation to be

computed; these two types of variables are known as initialisation variables.

Variables come in three main kinds, or types: scalars, arrays and structures.

Scalars have a single value. There are four types of scalar variables:

Real Can be any numeric value. When writing a real value in a management script, either

decimal notation (e.g. -63.45) or exponential notation (e.g. 1.46E-5) may be

used.

Integer whole values: ...-4, -3, -2, -1, 0, 1, 2, 3, 4, ...

Text may contain any text (i.e. zero or more characters). When writing a text value in a

management script, the characters are surrounded with single quotes (e.g. 'xyz') to

12

distinguish them from references to variables, which are written without quotes. To

place a quote character in a text value, write two quotes: for example, writing

'quote('')' gives the value quote(').

Logical variables are either true or false. A true value is written as TRUE in a management

script, while a false value is written as FALSE (this is case-insensitive)

Arrays are ordered lists of variables in which all the members (known as elements) are of the same

type. When writing an array in a management script (the Manager module), the elements are

surrounded with square brackets ([]) and successive elements are separated from one another with

commas. The name of the n-th element of the array named array is array [n] (n is known as an

index). The first element of an array has index 1.

define integer x[8] ! An array of integers called x

set x[6] = 99 ! Refer to the 6th element of array x

Structures are lists of variables in which the members (known as fields) may be of different types.

Since each field of a structure is itself a variable, it has a name and a type. When writing a structure

value in a management script:

 the structure is surrounded by brackets (());

 successive fields are separated from one another with semi-colons; and

 the value of each field is preceded by its name and a colon.

To refer to a field of a structure variable in a management script, append the field name to the

structure name, with a colon between them (e.g. seeds:soft_ripe).

define s = (field1:8; field2:'fox'; field3:- 99.9) ! A structure with three fields

set s:field2 = 'jumps' ! Refer to the second field of structure s

13

4. EVENTS

4.1 Management events

A management event of a module represents an instantaneous change in the module’s state variables.

Each event has zero or more quantities, known as parameters, which are used to specify exactly how

the module’s state variables are changed.

For example:

 Application of irrigation water to a soil can be represented as an event that changes the amount of

water present in the soil profile. The amount of water applied and the rate of application are

parameters that affect how the added water will percolate into the soil.

 The selling of livestock is an event that changes the number of a specific group of animals that are

present in the simulation. The group of animals to be sold, and the number to sell are the

parameters of this event.

An event is specified in a management script by giving its name, followed by the value of zero or

more parameters. Each parameter is written by giving its name, followed by an equals sign (=) and an

expression that is computed to give the value of the parameter (see section 15.3 for more information

about expressions).

! Send the "shear" event (with no parameters) to all modules that accept it.

shear

! Send the "buy" event to a specific module named "cattle".

! Four parameters are given, with a space between the event name and first parameter

! and commas between the parameters.

! Note how the "number" parameter is specified as an expression that must be evaluated.

cattle.buy number=0.5*stock_rate*paddock1.area, sex='steers', age=8.0, number=200.0

More detail about specifying events is given in section 15.2.

4.2 Sequenced events

The rate equations of components are also implemented as software events, known as sequenced

events. Each sequenced event is computed once per time step. AusFarm handles the setting up of the

sequenced events automatically.

These events are called "sequenced events" because the order in which they are computed can affect

the simulation's results. For example, if a Weather module executes the logic that reads in the

temperature data for a day after a plant growth module uses the temperatures to compute growth of

the plants, the resulting growth rates will be different to those obtained if the weather data are read in

before the growth computations.

The order of computations within each time step is known as a simulation's sequencing. The order is

expressed by assigning a positive integer value (its ordering) to each sequenced event in a simulation:

an event with a lower ordering is executed before one with a higher ordering. The order in which

events with the same ordering value are executed is left unspecified. Ordering values are only

14

meaningful relative to one another. AusFarm configures default sequencing for each simulation. This

default only needs to be changed under special circumstances.

Note: In terms of their implementation as software, there is no distinction between a sequenced

event and a management event, except that sequenced events may not have parameters. The

distinction between them arises from the purpose of the event code.

15

5. USING AUSFARM

Typically, use of AusFarm will follow these steps:

 Determine what question AusFarm is to answer, and therefore what information a simulation (or

simulations) with AusFarm needs to generate. This is the most important step in the process.

 Construct a simulation that represents the biophysical and management system under

consideration.

(a) Create a simulation window, or open an existing simulation file that is suited to the question

at hand.

(b) Configure the simulation to include representations of all the processes that are important in

understanding the biophysical problem.

(c) Specify the initial conditions of the simulation: the locality for which weather data are to be

used, the attributes of soils, plants and animals on the first day of the simulation, costs and

prices, etc.

(d) If necessary, describe the management of the biophysical system by writing a management

script.

(e) Select the outputs to be stored for later viewing.

 Run the simulation.

 Extract the results of the simulation as tables or charts, and using these outputs to help answer the

question at hand. AusFarm contains powerful facilities for summarizing simulation outputs. It

may also be useful to export information from AusFarm to another program such as a spreadsheet

or statistics package for further analysis.

Answering a question will often require several slightly different simulations. If so, the user can make

copies of the first simulation quickly and easily and then adjust the copies. AusFarm allows several

simulations to be executed simultaneously.

Often, the set of simulations that is required takes the form of a structured “simulation experiment” in

which one or more inputs to the simulation are varied systematically. Such simulation experiments

can require large numbers of simulation runs. AusFarm contains an analysis facility that allows the

user to design, execute and report on such sets of simulations.

Note: Beyond a certain level of complexity, it becomes almost inevitable that a simulation will not

work as intended the first time it is run. It is the user's responsibility to store and examine

outputs from the simulations to ensure that their structure, initial values and management

script are working as intended. Various logging options are available to assist in this process.

16

6. GETTING STARTED

The software tutorial section of this manual begins here.

6.1 Installing AusFarm

 AusFarm is currently a Microsoft® Windows 32 bit native code program that can be installed and

run on 32 bit and 64 bit versions of Windows.

 Start by installing the AusFarm software. Run the setupaf.exe program and follow the prompts.

Some sample weather data will be installed that will allow the running of an example simulation.

6.2 Running AusFarm

 Run the AusFarm program. The main window will appear:

The main window has a menu and toolbar at the top and a client area where other windows for

simulations, results selection and reporting reside. At the right-hand side of the toolbar is the

Component Palette, which is used when configuring simulations.

 Choose the File | Reopen option and choose the Example.afs simulation.

17

6.3 The Main Window

The main window hosts simulation windows. You may have multiple simulations open at once. Along

the top of the main window is the main toolbar and the component palette.

The main toolbar is useful for quick access to common tasks.

 Create a new simulation

 Open an existing simulation

 Save the current simulation

 Open the outputs window

 Show or hide the Repository

 Open the preferences dialog

The component palette displays the components

that are able to be incorporated into a simulation.

They can be dragged from here with the mouse

onto a simulation tree. Right clicking the mouse

on a component item on the palette displays a

menu with further options.

Info Reads the internal component description and displays property and event

information.

Sequence Allows changing of the default sequenced event ordering for this component.

Change icon Allows changing of the default component icon

Help Opens the help file with the component specification for this component

Remove Removes the component from the palette. This does not delete the file

Move to Options for moving components onto other tabs

6.4 A Tour of the Simulation Window

Simulation windows are used to create and modify simulations. It is possible to have several

Simulation windows open in AusFarm at once.

18

Each Simulation window is divided into three main areas, or panes. The two middle panes contain a

number of tabs that become visible depending on the task that the user is performing.

6.5 Upper pane

The upper pane is used to enter the date ranges over which the simulation is to be executed. The

preferred reporting option is also chosen here.

Type Use this combo box to select the type of simulation run that is to be performed. In this release

of AusFarm, the only option in this combo box is "Historical".

Start Enter the start date for the simulation. Note that all initial values that are entered apply on this

date. Dates may be entered in "d mmm yyyy" format, or selected by clicking on the calendar

buttons and so opening a calendar dialog.

End Enter the end date for the simulation.

Click the Run button to commence executing the simulation.

This button appears when the simulation is configured as an Analysis. It will execute the

Analysis.

../help/html/analysis.html

19

The Stop button appears while the simulation is executing. Click it to halt execution.

6.6 Left-hand pane

This pane has three tabs:

 Models tab is always visible. It is used to configure the simulation

model.

 Selecting a module in the Models tab will make either

the Initialise tab, the Outputs tab or the Management

Script tab visible in the right-hand pane, depending on

the type of module selected.

 Variables

tab

becomes visible when the user is editing a management

script. It shows the names and structure of all variables

belonging to modules in the simulation.

 Events tab becomes visible when the user is editing a management

script. It shows the names and parameters of all events

belonging to modules in the simulation.

6.7 Right-hand pane

This pane has six tabs, although they are never all visible at once:

 Initialise tab

Becomes visible when the user

selects a module other than a

Manager or Output module in the

Models tab. It shows the initial

values of variables belonging to the

selected module and allows the user

to change them.

20

 Outputs tab

Becomes visible when the user

selects an Output module in the

Models tab. It is used to select the

output variables that will be stored

as the simulation executes, and that

can be examined once execution is

complete.

 Notes tab

Is always visible. It allows the user

to annotate the Simulation window.

 Management Script tab

Becomes visible when the user

selects a Manager module in the

Models tab. It is used to enter the

management script for that module.

 Logging tab

Is always visible. Use the options in

the Logging tab to set up error and

trace logging for the simulation.

When trace file logging is turned on

the tab will include an icon as a

visible warning.

 Analysis tab

Becomes visible when the user

selected the Simulation module (i.e.

the module at the base of the

configuration tree). It allows the user

to modify the factor levels in a

simulation analysis and to design

one or more reports that will be

generated after the analysis is

executed.

21

6.8 Configuring and Initialising Modules

The first major step in constructing a simulation analysis in AusFarm is to configure the simulation by

adding the set of component modules in the simulation and describing their inter-relationships.

Before configuring a simulation, the user should consider what set of processes needs to be included

in the simulation to answer the question of interest. The configuration that is chosen should be the

simplest that meets this criterion.

In the example simulation click on the Initialise tab. Fields of records and elements of arrays are

organized into a tree-structure, as shown in the figure below:

Select the pasture module and either double click on it or right click and choose the Initialise option.

A Pasture initialisation dialog will appear. Examine some of the settings on this dialog and then close

it by choosing Cancel. Most AusFarm components will give you access to an initialisation dialog that

is customised for the component’s design.

6.9 The Notes and Logging tabs

 Click on the Notes tab in the right-hand pane of the simulation window. This tab contains a memo

control in which you can document the purpose and features of the simulation.

22

 Click on the Logging tab in the right-hand pane of the simulation window. This tab contains

options that allow details about the execution of a simulation to be examined once it has been run.

Using the trace option adds significant time to the simulation run and should only be used when

there is an internal problem with the simulation structure that has to be solved.

6.10 Selecting and Storing Outputs

When a simulation is run, AusFarm can store the values of variables over time so they can be shown

or summarized in a report. Before variables can be used in reports, they must be selected as part of an

Output module.

 Starting with the simulation you created before; Select the Output module by clicking on its icon

() in the Models tab of the simulation window.

 The Outputs tab will replace the Initialise tab in the right-hand pane.

23

 If you want to filter the list of variables by name you can start typing the name in the Look for:

text entry. It is also possible to filter the list to only show the outputs that are selected. These

filters can be used together if required.

The Outputs tab contains a grid containing variables that are organized into a tree-structure.

 Click on the expansion button () by the Weather module’s icon in the Outputs tab. A list of

the output variables of the module will be revealed.

 Scan down through the list of variables and expand the variable named weather to see its

fields.

 Check that the COVER_GREEN, COVER_TOT variables are selected for output. Type cover in

the filter text entry.

 For the real-valued variables, the number of decimal places to be displayed can be chosen

here.

 When an array type is selected, all of its elements will be accessible for display.

 The “Aggregation” and “Alias” columns can be ignored in most situations.

24

 The output file location can be modified from this tab. It is good practice to have this file name

match that of the simulation file. It is possible to run more than one simulation simultaneously. To

do this the output modules must save their outputs to different files. (Note that AusFarm results

files are actually Microsoft Access data bases, but the data is stored in a compressed binary form.)

 Save the changes to the simulation by clicking the Save button on the toolbar (). The Save

dialog will not appear as the name for the simulation file is already known.

6.10.1 Exporting results

When using the database output component it is possible to export the results from a simulation or

Analysis run into a single database. This is useful for collating the results from the simulation runs

into a database that can be queried using SQL.

Right click the mouse on the output component and choose Export outputs. There are three storage

formats available.

6.10.2 Using the TextOut component

If output from the simulation run is preferred in text file format then the TextOut component can be

used. It is available in the model palette. Once this is placed in the simulation, variables can be

selected for this component using it’s inbuilt component dialog that you can access by double clicking

on the component.

Once a simulation has been run and outputs stored in a text file, right clicking on the TextOut

component and choosing View text output, will allow you to open the resulting text file from the

AusFarm user interface.

6.11 Running a Simulation

 The last step before running the simulation is to set the date range over which it is to be run. If

25

you wish you can lengthen the run period.

 This is an Analysis so use this button to execute the simulation.

 While the simulation is executing, an indicator appears on the upper pane of its

window showing the progress of the calculations.

 The Run button on the upper pane of the simulation window will be replaced by

the Stop button. Clicking the Stop button halts execution of the simulation.

When running multiple simulations with management events, errors or messages being logged then

these must be saved to unique files.

After executing this simulation, the chosen report option will be

displayed. In the example simulation the Report is chosen and the

preconfigured report will open at the end of the simulation run.

After examining the report, close it.

The Simulation results option will open the Simulation Results

window in the same way that the main toolbar option does. From there you can choose which outputs

you wish to see.

6.12 The Results Window

The Simulation Results window in AusFarm is used to select results from simulations and to format

them for display in reports.

 Open the Simulation Results window by clicking the Results button () on the main toolbar.

26

All variables available for reporting from all completed simulations are shown in the tree at the left

of the Results window. To see the output files, modules and variables below a node in the tree,

click on the expand button by the node's name. To hide them, click on the collapse button.

Reports in AusFarm come in two kinds: tables and charts. The process for generating these reports

follows the same general set of steps:

 Select the variables that are to be presented in the report.

 Specify the data treatment that is to be applied to all variables.

 Specify the aggregation to be used for each variable within each time interval. This step is only

required if a time interval greater than one day is used.

 Click the Chart or Table button to generate a Report window.

6.13 Generating a chart

 Select the cover_green and cover_tot variables by clicking the check boxes next to their names

in the tree.

 Change the data treatment to “Long term average” and set the date range to be 1 Jan to 31 Dec.

 Change the time interval to 3 days

 Check the “Choose custom series colours” box.

 For each selected variable, click on the “Colour” column and select a colour for the variable’s

data.

 Click on the “Style” combo box and examine the options. Leave the chart style as Line.

 Click the Chart button. A Report window will be generated containing a chart something like this:

Click on the chart. The Edit Chart Properties dialog will appear:

27

 If you resize this window or change any chart formatting and then click ok, the changes will be

displayed on the report page. Click on the Edit... button and explore the options for formatting the

chart.

6.14 Generating a table

 Return to the Results window.

 Click on the Clear all button to clear any selected variables.

 Add the maxt and rain variables to the selected list. Set the aggregation of the rain variable to

“Sum” and the aggregation of maxt to “Maximum”.

 Choose the Data over period option.

 Click the Table button. A Report window containing annual total rainfalls and yearly maximum

temperatures will be generated:

28

6.15 Data treatments

The values of variables that are output from an AusFarm simulation can be treated in a variety of

ways. In the Results window, the following data treatments may be selected when producing charts or

tables:

Simple

A simple presentation just presents the values of the selected output over time.

Long Term

Average

For each day of year, an average value of the variables is computed over all the years in

the course of the simulation. In a chart, therefore, the X-axis shows days (or months) of

the year, e.g. 1 Jan, 2 Jan etc; the Y-axis gives the values of the output.

Average over

years

As for the Long Term Average treatment, but the average values are computed over the

selected range of years from the simulation.

Percentiles

The user nominates up to five percentile levels for display.

For each day of year in the nominated range, the output values for all the years in the

simulation are ranked. The value corresponding to each percentile level is then

computed. The values for each percentile level over time are presented as the output

29

series.

A point (x,y) on the zth percentile graph should be read as follows:

On day-of-year x a value less than or equal to y will be encountered in z% of years.

The X-axis of a percentile chart shows days (or months) of the year, e.g. 1 Jan, 2 Jan

etc; the Y-axis gives the values of the output.

Data for

period

For this treatment, the user nominates a range of days of the year and also a range of

years.

For each year in the range, an aggregated value is computed over the range of days and

these summary values are presented.

The X-axis for a Data for period graph is the year, e.g. 1978, 1979 etc; the Y-axis gives

the variable values.

To view values for a single day of year, select a time interval of one day in constructing

this range, e.g. 15 Apr to 15 Apr.

Data over

period

As for Data for period, but summarized over all years in the simulation.

P.D.F. for

period

P.D.F. stands for probability density function. The Y-axis shows the frequency of

occurrence (0-100%) for each of the classes on the X-axis. The user nominates a range

of days of year. AusFarm then aggregates the selected variables over these days for all

years of the simulation and allocates them to a class. The class boundaries are

determined by taking the range of values and dividing it into five or ten equal classes,

depending on the number of years involved. A PDF graph with value y should be read

as follows:

There is a probability y that the selected output will fall within the class given on the X-

axis.

C.D.F. for

period

C.D.F. stands for cumulative distribution function; to be precise, this presentation

shows probabilities of exceedance. The X-axis of a C.D.F. graph shows the range of

30

output values and the Y-axis gives the probability that in any year, the value of the

output will be greater than a given level. The set of outputs used to estimate these

probabilities is computed as for a P.D.F. A point (x,y) on a C.D.F. graph should be read

as follows:

There is a chance y that the output variable will be greater than a value of x at the

given time of year.

In section 7 we will configure a simple simulation with two key modules (Weather and Output) and

examine the ways that modules can be initialised.

31

7. CONFIGURING A NEW SIMULATION

In this section the process of creating a new simulation will be shown. It is a simple example but

shows the steps that are required for any simulation.

 Click on the New simulation button on the main toolbar.

 Give the simulation a unique name. Do this by clicking on the

name by the simulation icon () in the Models tab of the left-

hand pane (it reads sim), typing in a new name and pressing Enter.

 Beside the simulation’s icon there is an “expand” button (). Click on this button to see the

modules that have been included in the new simulation by default. There will be a Manager

module and an Output module.

 The Manager module is not required. It can be deleted or left in the simulation without any script

defined for it.

 Examine the component palette at the top of the main window. On the palette is a set of icons,

each of which represents a component.

 To see which component is denoted by an icon on the palette, pass the mouse over the icon.

The component name will appear as a hint.

 Right-click on the Weather component icon and select the Info option from the pop-up menu

that appears.

 Add a Weather module to the simulation.

 Click on the Weather component icon in the palette.

 Drag it to the simulation icon in the model tree in the Models tab of the simulation window

and drop it there.

 Give the new Weather module a name, using the same procedure as for renaming the simulation.

Module names cannot include spaces or periods. If you type those characters they will

automatically be replaced with underscores.

7.1 Specifying initial values

The easiest way to specify the initial values of a module is by using its initialisation dialog. Each

component in the default AusFarm distribution has its own dialog.

 Specify the initial values of the new Weather module.

 Double-click on the Weather module’s icon in the model tree on the Models tab. The

component’s initialisation dialog will appear.

 Choose the Source of the weather data as Locality in locality set.

 Choose the locality.set locality set file and select the Canberra (ACT) locality.

 Enter the name of the folder containing the GrazPlan Weather Files in the appropriate edit

control. Use the browse button to open the directory dialog. Find the weather directory under

the AusFarm installation directory.

32

 When you have the settings as shown above, click the OK button to leave the dialog.

 At this point, the simulation window should look similar to this:

 The Initialise tab can be seen in the right-hand pane of the simulation window. It contains a grid

in which each row represents a variable (or part of a variable), and there are columns that display

each variable's type and name, initial value, and (optionally) units, default value, and minimum

and maximum permitted value. The type of each value is shown by the icon next to the variable’s

name.

 The initial values (in the "Value" column) can be edited. Press F2 or click twice on a value (leave

a gap between the clicks). This activates an editor that allows you to change the value. (Don’t

change anything now.) Press Enter to deactivate the editor or an arrow key to move to another

value.

 Select some outputs as shown previously in the Selecting Outputs section.

 Save the simulation by clicking the Save button on the toolbar () and completing the dialog

that appears.

 Run the simulation by clicking on the Run button.

 Examine the results by opening the Simulation Results window.

33

7.1.1 Comparing initial values of components

It is often useful to compare the initial values for like components in a simulation or between

simulations. Using the clipboard to copy the first component in the model tree and then choosing the

Diff menu option on a second component will invoke a difference viewer.

Firstly: Configure the setting on the Options dialog for the Difference viewer.

Then from the model tree select a component and then right click and select the Copy option from the

popup menu. Select another component in the model tree of the same type and right click the mouse.

The popup menu will now have an extra option, Diff with.... Choose this option and the external

viewer will show the differences between these components. For Manager script components the text

will be plain text as seen in the Manager Script editor. For other components the SDML script in

XML form will be shown. Although a little cryptic this is still a useful means of checking for

differences.

Because this differencing technique uses data stored in the clipboard, it is easy to do comparisons

between components in different simulations.

34

An example of comparing two Manager scripts.

7.1.2 Using APSoil soil data

It is possible to copy the soil descriptions from

APSoil directly into AusFarm. This is done

firstly by copying the soil in APSoil to the

clipboard. Then with a paddock component in

the model tree in AusFarm; right click on the

paddock and choose Paste APSOIL.

Once the soil is pasted on the paddock, new components will be added to the paddock system. The

nitrogen model then needs to be initialised for initial nitrogen values. The soiln initial values are

shown below.

35

The initial values for the cropping modules will need to be set manually as shown below.

36

7.2 Sequencing the simulation

The components in the simulation will have some default sequenced events triggered during the

execution of the simulation. If multiple Manager components or multiple TextOut components are

included in the simulation, it may be necessary to adjust when their logic is processed within the daily

timestep. Each component can have the timing of its default subscribed events adjusted individually,

but it is also possible to view the whole simulation by right clicking the mouse on the top node of the

model tree and choosing Sequence.

.

The editing dialog has two tabs. The first one gives a view of the whole simulation ordered by the

sequence number in the timestep.

37

The second tab allows editing of the values. The default value is shown next to each custom value.

The range is from 0-9999. If you want to turn off the automatic sequencing of the event shown, then

uncheck the checkbox in the tree for that event.

In the example below you can see that the summaries management script will have it’s logic

processed after the resets_etc script and before the Output component no matter where it resides in

the model tree.

Care should be taken when adjusting the sequencing. This can easily ‘break’ your simulation!

38

8. SIMULATION ANALYSES

When the objective of a simulation study requires that a large number of related runs be executed, and

a “base case” simulation has been configured and tested, then the analysis facility in AusFarm is

useful.

The central idea is that one or more of the modules in an AusFarm simulation can be defined to be

factors. Each factor module has one or more sets of initialization data (known as factor levels, on

analogy with field experiments). When a simulation is run as an analysis, every possible combination

of factor levels is used to automatically construct and execute a simulation.

The user can also specify one or more report templates. Each report template describes a set of charts

and tables that compare the results of the simulations in an analysis. When the analysis has been run,

AusFarm uses the simulation results to generate an HTML document containing these charts and

tables.

Note: For modules that are systems, it is possible to define the entire system as the factor. For

example a paddock module is a system.

8.1 Setting up analyses

For example, to test the effect of systematically changing the characteristics of the Paddock module in

a single-paddock system, open the example simulation in example.afs.

 Right-click on the Paddock module in

the configuration tree, and select the

Add System Factor option from the

pop-up menu.

 Factor levels contain initialization data. This data can be modified by using the initialization dialogs

or via data entry interface in the Initialise tab, just as for modules in the configuration tree. Change

the name of the new factor to Mid fertility and check that the fertility property of the pasture

module has a value of 0.75 as shown.

39

 To add an extra factor levels, either select the Add System Factor option again or right-click on one

of the factor levels and select Clone from the pop-up menu.

 Once a simulation contains one or more factor modules, the Run Analysis button appears in the top

pane of the Simulation window. Clicking the Run button executes the base simulation, while

clicking the Run Analysis button will set up and execute one simulation for each combination of

factor levels:

 Click on the simulation node (Example)

in the model tree and you will be able to

see the complete structure of the

Analysis.

40

 Run the analysis.

 If the Report has been selected as for

output then the report will be displayed.

 Open the Results window. The tree of

results now has an extra level; within the

simulation, there is a sub-tree for each of

the simulation runs that was run in the

Analysis, and within each run the same

set of output variables (with different

values) is displayed for selection.

 Select the simulation node (Example) at

the root of the model configuration tree.

The Analysis tab will appear, showing

the structure of the entire analysis (i.e.

all factors and their levels).

 Right-click on the Analysis item in the

Analysis tab. From here you can add

another report item to the Analysis if

required.

 Double-click on the existing Report object. The Report Designer dialog will appear. (See the Help

file for details on how to set up charts and tables in reports).

8.2 Using Generic modules as factors

Often, the factor in a simulation analysis is used control a management activity, and is therefore

expressed in a management script. In these cases it can be inefficient to make the Manager module

into a factor module, especially if more than one factor in the simulation experiment is implemented

via management rules. In these cases, an elegant solution is as follows:

 add a Generic module to the simulation’s configuration;

 define a variable within the Generic module and provide an initial value for it;

 use this variable in the Manager script, either directly in events (e.g. a stocking rate) or in a

conditional statement or statements that turn particular rules “on” or “off”;

 convert the Generic module into a factor in the analysis.

When using a Generic module for this purpose, it is important to refer to the factor variable with an

unqualified name in the manager script, e.g. stock_rate instead of sr_factor.stock_rate.

Another way to use the Generic component is as

a system component. It is easy then to use this

system structure as a factor value in an Analysis.

In the example below the Manager script can be

dependent on the location.

41

9. CONFIGURING REPORTS

An AusFarm simulation can contain a number of reports. You can edit each one independently,

adding as many sections such as tables, charts, and grid layouts as you require. See the Help file for

more details.

Report Designer dialog

9.1 Report Variables

In the bottom table of the Report Designer is a list of the variables that will be used in the selected

report section. Use the Select, Remove, and Clear buttons to manipulate the list of variables in each

report section. You can order the variables using the red up and down arrows

Calculated expressions

By using the button you can add a calculated expression as a column in your table or chart.

42

In the name column for a calculated expression, enter a mathematical expression. It may include the

names of other columns. In this case: income_ha - expense_ha. You can choose whether you want to

display the source columns.

Note: You cannot do any aggregation on the calculated column.

43

10. USING REPOSITORIES

Repositories are used to store module data and management scripts that are used regularly in

simulations.

Items of a similar type can be grouped into folders within a repository. Repository items are

associated with a component. Items associated with the Manager component are treated somewhat

differently to other items.

Examples of items that may be stored in a repository are:

 commonly used sets of management rules

 an archive of project work for later use

 a "library" of commonly used soil descriptions.

10.1 Getting module data from a repository

 Close the Results window.

 Open the Repository clicking the library button on the main toolbar.

 A Repository window similar to this will open on the bottom of the main window:

 The Repository is divided into two sections. The Custom section is for the user to add to or delete

from while the Standard section contains items that cannot be changed.

 Items from the Repository can be dragged into simulations using the mouse.

 When you need to add items to the Repository, items can be dragged from simulations and

dropped into folders.

 Before you exit AusFarm you will be asked if you want to save any changes you have made to the

Repository.

44

 To save changes or add folders, just right click the mouse on an item in the Custom section.

 You can also have other custom Repository files. If you right click on the Custom library you can

open another file. If you want to create another custom library file, choose the Open file... option

and type in a new name in the Open file dialog. You will then be asked if you want to create a

new file.

 Items from the Standard library section can be copied into the Custom section by just dragging

with the mouse.

10.2 Copying module data to a repository

 Drag the icon for the Weather module onto a folder in the repository. A new repository item will

appear.

 Select the Weather repository item. The initial values for the module will appear in the right-hand

pane of the repository. These values can be edited in the same way as in the Initialise tab of a

simulation window.

10.3 Copying module data from simulation to simulation

 Add a second, identical paddock to the simulation:

 Right-click on paddock1 in the Models tab.

 Select the Copy option from the pop-up menu that appears.

 Right-click on the simulation icon in the Models tab.

 Select the Paste option from the pop-up menu that appears. A copy of the paddock system

will appear.

 Rename the new paddock as paddock2.

The same process can be followed to copy module data between two different simulation

windows. Modules may also be dragged and dropped rather than copied and pasted.

45

11. SPECIFYING MANAGEMENT

Management activities in AusFarm simulations are represented as a series of events that change the

state of the various biophysical models that make up the simulation. For example, irrigation is

represented as an event that changes the amount of water present in the soil profile, and the selling of

livestock is represented as an event that changes the number present of a specific group of animals in

the simulation.

Each component has a defined set of management events that can be applied to it. When and how

these events take place is specified using one or more Manager modules. Each Manager module

contains a management script composed of statements that describe

 when and under what conditions events are to be executed;

 which module(s) are to execute an event;

 the parameters that determine exactly what happens when the event takes place.

In the real world, the timing and nature of management activities often depend upon the current state

of the system. For example, irrigations (events) might be scheduled to take place only when the soil

water deficit (part of the system state) is greater than a nominated threshold. Management scripts can

respond to the state of the simulation by accessing variables from the rest of the simulation. The

values of these variables can then be used to specify event parameters and the conditions that

determine whether events take place. They can also be combined into expressions and defined

variables that may then be used in management rules.

 To complete the tutorial open the example.afs file.

 Double-click on the module and examine the Stock initialisation dialog:

 The Stock dialog shows that two genotypes are described. Close the dialog.

 Examine the management script by clicking on the Manager module in the simulation tree. It

contains a variety of different elements.

46

 Definition statements create variables that can be used in other places the script.

 Time specifiers determine when rules should be executed.

 References to external variables allow the rules to be influenced by the state of the

simulation.

 Events change the state of other modules.

 Control rules govern the order in which events are executed.

 Assignment statements set the value of defined variables.

47

12. WRITING MANAGEMENT SCRIPTS

A management script is made up of a collection of statements. The majority of statements define

rules. At each time step, each rule statement in the script is evaluated to determine whether any

management events should be issued to the rest of the simulation for processing.

 The order in which the statements forming a management script are evaluated is not defined. To

ensure that rules are evaluated in a particular order, control rules must be used (see below).

 Comments may be placed in a management script, preceded by ! .

 The script editor colour-codes various elements of a script to assist the user in identifying them.

Keywords are shown in dark blue; numeric values and dates in blue; text values in magenta;

event parameters in green and comments in red.

12.1 Using the script editor

12.1.1 Code completion

When typing management script and the name of one of the components is followed by a period, by

waiting for around one second a window will popup showing a list of properties and events that

belong to this component. In the example below you can see a list of the events that can be triggered

in the stock component. Highlight the preferred event in the list using the up or down arrow keys on

the keyboard or use the mouse cursor to select it. By then pressing enter on the keyboard it will be

inserted into the Manager script.

48

12.1.2 Matching braces

To assist with formatting the Manager script correctly the editor shows clearly the matching braces in

the script. When the cursor is placed on a [, {, or (type of braces the corresponding one is also

highlighted. As shown in the figure below.

12.1.3 Bookmarks

To set bookmarks in the script there is a keyboard combination that performs this task. To set a

bookmark use the key combination, CTRL + Shift + 1. When a bookmark is set you will see a small

number icon in the left hand gutter of the editor. To unset the bookmark, ensure the cursor is on the

line of the bookmark and use the same key combination. You can have up to nine bookmarks on each

Manager editor. Just use the CTRL + Shift + number combination for any extra bookmark.

Once a bookmark has been set in a script, it is easy to go to that line at any time using the key

combination CTRL + number.

Bookmarks are shown in the following figure.

49

12.1.4 Checking the script

After writing a section of Manager script it is useful to check that it is written in a well formed

manner. At the bottom of the Manager Script tab is a button that can be used to start a syntax check of

the script. This option will run some initial tests and alert you to any obvious problems before doing a

run of the simulation. This option is highlighted in the figure above.

12.1.5 Inspecting the Management script

While the simulation is running it is possible to log many of the functions performed by the Manager.

By ticking the two check boxes at the bottom of the Manager Script tab and providing a filename for

the log, a list of management details will be saved to file. This is extremely useful for checking that

the management of the simulation is working as expected.

12.2 Time specifiers

Each rule statement has two main parts: a time specifier and a rule. The time specifier denotes the set

of time steps on which the rule is to be evaluated. The time specifier is optional; if it is not given, the

rule is evaluated on each day of the simulation.

Examples of time specifiers are:

on 1 Apr 1980 ! single date

each 25/7 ! 25 July in each year

from start to 31 Dec 2001 repeat 7 days ! weekly from the start date

from 15 Feb to 15 Apr repeat 1 month ! weekly

 When giving a date or day-of-year in a time specifier, the month may be given as either a month

number (1 to 12) or as a three-letter abbreviation. Years should be given with four digits.

50

12.3 Rules

Rules come in four main types:

 Event rules cause management events to be transmitted to the rest of the simulation.

 Assignment rules change the value of a variable.

 Control rules are used to control the order in which other rules are executed. There are four kinds

of control rule: rule lists, conditional rules, FOR loops and WHILE loops. Every control rule

contains one or more sub-rules, which may themselves be control rules. A rule statement may

therefore be made up of a nested set of rules, as shown in the examples below.

 Subroutine calls, used in conjunction with subroutine definitions, can be used to invoke

combinations of rules that may need to be used repeatedly.

12.3.1 Event rules

An event rule is specified by giving the name of the event together with zero or more parameters,

which are separated by commas. The number of parameters and their types depend upon the event

(see section 16 for details). The event name may need to be qualified to inform the simulation which

module (e.g. paddock or pasture species) it is to apply to.

It is the rule-writer’s responsibility to ensure that events are specified with the correct parameters and

that parameter expressions are of the correct type.

Parameter values may be given as constants, but they may also be given as expressions that are

evaluated to provide the value of the parameter (see section 15.3).

When specifying an event, it is usually possible to give fewer parameters than set out in section 16. In

this case the remaining parameters are assigned a default value which is usually zero, FALSE or the

null string according to type.

Examples of event rules are:

paddock3.ryegrass.sow rate=10.0 ! Note use of qualifier

move group=2, paddock='paddock3' ! Unqualified – only livestock have "move"

 ! Note the single quotes around the string

buy 'wethers', 10*paddock1.area, 18.0, 50.0 ! No parameter names-legal but difficult to

 ! read. Note the use of an expression in a

 ! parameter.

12.3.2 Assignments

Assignment rules change the value of a variable. This variable may be one that has been defined

within the manager script (see section 3.4) or it may be one of a subset of state variables that may be

reset from the manager. Assignment rules take the form

set name = value variables defined within the manager script

reset name = value state variables of other modules

51

where name identifies the variable and value is an expression that gives the new value for the

variable.

 It is the rule-writer’s responsibility to ensure that the name refers to a variable defined within the

management script, and that the value is of a type that is compatible with the variable to which it

is to be assigned.

Examples of assignments are:

set x = 10.0

set w = w + number[i] * weight[i] ! Part of getting a weighted average

set pasw[i] = 0.0 ! Assignment to an array element

reset paddock1.clover.fertility = 0.85 ! Assignment to an external variable

12.3.3 List rules

List rules group one or more rules together, ensuring that they are evaluated in sequence. A list rule is

formed by surrounding the sub-rules with curly braces {} and separating the sub-rules, either with a

semicolon or by placing them on separate lines.

An example of a list rule is

{

 set x = 99.0 ! A rule on its own line

 set g = 6; set p = 'paddock1' ! Two rules, separated by a semi-colon

 move group=g, paddock=p ! Same as "move 6, 'paddock1'"

}

It is possible for list rules to be nested several levels deep; as a result it is usually worth while to

indent them neatly.

12.3.4 Conditional rules

Conditional rules take one of two forms:

if condition sub-rule

if condition sub-rule1 else sub-rule2

The “condition” is an expression that evaluates to a logical value (TRUE or FALSE). When the rule is

evaluated, the value of the condition is computed. If it is true, then the first sub-rule is evaluated.

Otherwise, if the else keyword and second sub-rule have been given, the latter is evaluated instead.

If the condition is false and there is no second sub-rule, then the manager moves on to the next rule.

 Expressions with numeric values can be used as the condition in a conditional rule. In this case,

any value other than zero is taken to mean TRUE and a zero value is taken to mean FALSE, in

accordance with the type-conversion rules.

 If the first sub-rule is not a list rule, it must be placed on a new line.

52

Examples of conditional rules are:

if x < 10.0 { set x = 10 } ! Same as "set x = max(x, 10.0)"

if b ! OK to put sub-rules on a new line

 paddock1.water.irrigate amount=20.0 ! This is sub-rule1

else

 paddock1.water.irrigate amount=10.0 ! This is sub-rule2

if sheep.tag_no[i] = 1 ! Here the sub-rule is a list rule

{

 sheep.shear group=i ! Sell animal group "i" off-shears

 sheep.sell group=i, number=sheep.number[i]

} ! Neatly indented...

12.3.5 FOR loops

FOR loops take the form:

for variable = start to end sub-rule

In this rule, variable must be an integer variable defined within the manager script, and start

and end are expressions that should evaluate to integer values. When the rule is evaluated, the values

of start and end are evaluated. The sub-rule is then evaluated repeatedly, with the nominated

variable set in turn to each of the values start, start +1 ... end.

 If the sub-rule is not a list rule, it must be placed on a new line.

 If the value of start is greater than the value of end, the sub-rule is not evaluated.

 It is inadvisable to set the value of the control variable within a FOR loop.

 At the end of the FOR loop, the value of the control variable will be set to end+1.

The examples of the FOR loop shows how to handle two common situations:

 the case where a task must be performed for each group of animals in a Stock module

 the calculation of a summary variable from one or more arrays.

for i = 1 to animals.no_groups

 sheep.move group=i, paddock='paddock2'

set pasw = 0.0

for i = 1 to no_layers ! Will only work for a single-paddock

{

 set layer_asw = max(0.0, sw_dep[i]-ll15[i]) ! system (variables are unqualified)

 set pasw = pasw + layer_asw ! Sum over layers of "layer_asw"

}

12.3.6 WHILE loops

WHILE loops take the form:

while condition sub-rule

The condition is an expression that evaluates to a logical value. When the rule is evaluated, the value

of the condition is computed. If it is TRUE, then the sub-rule is evaluated. The condition is then

53

evaluated once more, and if it is still TRUE, then the sub-rule is evaluated again. The sub-rule is

repeated until the condition evaluates to be FALSE. If the condition is FALSE when it is first

evaluated, the manager moves on to the next rule.

 It is the rule-writer’s responsibility to ensure that the sub-rule will eventually cause the condition

to become FALSE. If not, the loop will continue to be evaluated indefinitely and the program will

have to be terminated from the Task Manager.

 Because of the above, it is usual for the sub-rule in a WHILE loop to be a list rule.

 If the sub-rule is not a list rule, it must be placed on a new line.

An example of a WHILE loop is:

set i = 10

while i > 0

{

 set x = x + i

 set i = i – 2 ! Change a term in the condition...

}

12.3.7 SUBROUTINE calls

Subroutines may be defined which allow a group of rules to perform a specific task while remaining

relatively independent of other portions of the code. Parameter lists may be used to transfer values to

a subroutine; within the subroutine, the parameters are treated as const variables. Although one

subroutine may call another, recursion is not supported (that is, a subroutine may not call itself).

Rules within subroutines may access variables defined within the manager script and “external”

variables from other modules, just as ordinary rules may do. Additional variables may be defined

within a subroutine; such variables have “local” scope and may be used only within the subroutine

where they are declared.

SUBROUTINE definitions take the form:

subroutine subroutine-name (parameter-list) { rule-list }

Calls to a subroutine take the form:

call subroutine-name parameters

An example of a subroutine definition and subsequent call is

subroutine join_ewes (ram_breed: string; no_days: integer)

{

 define integer group ! A variable of local scope, used as a loop counter

 for group = 1 to animals.no_groups

 if (animals.tag_no[group] = MATURE_EWE)

 animals.join group=group, mate_to=ram_breed, mate_days=no_days

}

each 1 Mar

 call join_ewes ram_breed = 'Small merino', no_days = 30 ! Parameters values are passed

 ! to a subroutine by using

 ! the same syntax as event rules

54

12.3.8 Indirection

Indirection is useful for referring to entities such as modules or module properties or events based on

a list of text values. The @() operator converts a text string into a reference to a module or property.

In event names:

@(module-name-expression).event

In expressions:

@(variable-name-expression)

Indirection is almost always used inside an iteration and/or a conditional statement that provides the

context.

Picking out a module in a particular paddock in order to perform an event on it

padd_name[1] = 'paddock1'

padd_name[2] = 'paddock2'

padd_name[3] = 'paddock3'

for padd = 1 to 3

 @(padd_name[padd]).grass.kill propn_herbage=1.0, propn_seed=0.0

Building arrays of summary variables across paddocks

for padd = 1 to no_paddocks

{

 set padd_deep_drain[padd] = @(padd_name[padd]&'.water.model.drain')

 set padd_cover[padd] = @(padd_name[padd]&'.cover_tot')

}

12.4 Event Handlers

By default, management rules are evaluated at each time step of the simulation, but it is also possible

to define sets of rules which are evaluated in response to events issued by other components within

the simulation. Data associated with the triggering event are passed to the handler via a parameter list.

Units of measurement may be specified for each parameter. The declared data types and units of

parameters must be compatible with those provided by the component sending the event.

EVENT HANDLER definitions take the form:

on_event event-name (parameter-list) { rule-list }

55

Here is an example of an event handler:

define real avgt

define real peak_radn = 0.0

on_event Weather.newmet (today:real; radn:real 'MJ/m^2'; maxt:real 'oC'; mint:real 'oC';

rain:real 'mm'; vp:real 'hPa') ! NOTE: The entire parameter list must be on a

 ! single line. It is shown here as wrapped only to

 ! allow it to fit within the page

 {

 set avgt = (maxt + mint)/2.0 ! Calculate a daily mean temperature in response to a

 ! 'newmet' event

 set peak_radn = max(radn, peakradn) ! Keep track of the maximum radiation received

 ! on a single day

 }

12.5 Expressions

As described above, various elements of rules may be given as algebraic expressions. Expressions are

constructed using constants, variables, operators and functions

12.5.1 Constants

 Real-valued constants may be given in decimal or exponential format (e.g. 1.34,

6.77E-2).

 Integer-valued constants are given in decimal format (e.g. 999, -1).

 Text strings are always surrounded by single quotes (e.g. 'Hello, world'). The quotes distinguish a

text string from a reference to a variable.

 Logical constants are given as TRUE or FALSE (case-insensitive).

 It is possible to have constant values that are arrays. Each element of an array should have the

same type. To denote an array, surround it with square brackets [] and separate each element with

a comma:

define real_array = [0.5, 0.6, 0.7, 0.8, 0.9]

define fox_array = [['quick', 'brown', 'fox'],

 ['jumps', 'over', 'the', 'lazy', 'dog']]

Note that in the second example, the array elements are themselves arrays, making a two-

dimensional array. (Note also that the sub-arrays need not be of the same length!)

 A value may also be a structure, i.e. a collection of named sub-values called fields. To denote a

structure, surround it with brackets (), precede each field with its name followed by a colon, and

separate fields with semi-colons:

define struct_var = (text_field: 'quick'; real_field:99.9; array_field:[1,2,3,4])

56

12.5.2 Variables

Variables in expressions are referred to by name. A variable may be defined within the manager (see

section 3.4) or it may be any variable that can be accessed from the rest of the simulation (see section

5). Variable names may need to be qualified in the same way as event names.

The elements of an array variable or the fields of a structure variable can be referred to using the

forms array[index] and structure:field respectively. Since elements in arrays and fields

in structures may themselves be arrays or structures, these references may be nested:

seeds[3]:unripe_soft ! Field "unrip_soft" within element 3 of "seeds"

foo[i,j] ! Same as foo[i][j]

12.5.3 Operators

The following operators may be used in expressions:

Arithmetic operators

+ Addition Numeric (integer if both arguments are integer, real otherwise)

- Subtraction Numeric (integer if both arguments are integer, real otherwise)

* Multiplication Numeric (integer if both arguments are integer, real otherwise)

/ Division Real

^ Power Real

mod Modulus (remainder) Integer

div Integer division Integer

Relational operators

= Equal to Logical (TRUE or FALSE)

/= Not equal to Logical

< Less than Logical

> Greater than Logical

<= Less than or equal to Logical

>= Greater than or equal to Logical

Logical operators

and And Logical

or Or Logical

not Not Logical

57

Text operator

& Concatenation Text

Brackets () may be used to govern the order of evaluation of operators.

 It is the rule-writer’s responsibility to avoid invalid arithmetic operations such as divisions by

zero.

58

12.5.4 Functions

A variety of functions are also defined for use in expressions. Arguments to functions may themselves

be expressions. They are separated by commas, as in the following examples:

max(-3, min(3, i))

upper('abc')

average(x[1], x[2], x[3], x[4])

average(x) ! Same as the previous one

Arithmetic functions Returns

max() Maximum Integer if all arguments are integer, real otherwise

min() Minimum Integer if all arguments are integer, real otherwise

sum() Total Integer if all arguments are integer, real otherwise

Average() Arithmetic mean Real

exp() Exponential (ex) Real

ln() Natural logarithm Real

sin() Sine Real

cos() Cosine Real

atan() Arctangent Real

round() Round to nearest integer Integer

floor() Integer next below Integer if argument is integer, real otherwise

Text functions Returns

max() Maximum Text

min() Minimum Text

upper() Uppercase Text

lower() Lowercase Text

str() Convert the value to text.

Optional second argument can be a format string or an integer. An

integer will specify the number of decimal places to display in the

converted value.

Format string: ‘4.3f’ or ‘2d’ where d is used for representation of

integer arguments and f for floating point values.

Text

length() Count the number of elements in an array. Integer

Date functions Returns

dayofyear() Return the day number of the year where Jan 1 = day 1.

e.g.

dayofyear(‘1-Jul’)

dayofyear(‘Dec-31’)

dayofyear(’12 Aug 1961’)

Where delimiters can be ‘-‘ or ‘ ‘ or ‘/’

Month names must be the first three characters from the English

month name.

The Year must be four digits. Where the year is not specified a

non-leap year is assumed.

Integer

 If the expression parser encounters an argument to a function or operator that is not of the

required type, it will attempt to convert it according to the following rules:

59

From To

Real Integer The value is rounded off.

Real Logical The value will be converted to TRUE if non-zero and to FALSE if zero.

Real Text If the absolute value is less than 0.000001, the value is converted to a

string using exponential format (e.g. 1.23763567E-8). Otherwise it is

converted using decimal format, with enough decimal places to ensure that 6

significant figures are displayed. At least one decimal place is always given.

Integer Real The same value is returned.

Integer Logical The value will be converted to TRUE if non-zero and to FALSE if zero.

Integer Text The value is converted to its decimal representation.

Text Real The string value will be parsed into a number. If it cannot be parsed, the

simulation will halt.

Text Integer As for text-to-real conversion.

Text Logical The value will be converted to TRUE if the string equals 'true' (case-

insensitive) and to FALSE otherwise.

Logical Real TRUE is converted to 1.0 and FALSE to 0.0.

Logical Integer TRUE is converted to 1 and FALSE to 0.

Logical Text TRUE is converted to 'true' and FALSE to 'false'.

 Variable values are obtained from the rest of the simulation as the expression of which they form

a part is evaluated. As a result, if a variable value changes in response to a manager event, its

value in any expressions evaluated subsequently will be the altered value, even within the same

time step.

12.6 Definition statements

As noted above, expressions may use variables that are defined as part of the manager script. Before

such variables are used, however, they must be defined using a definition statement.

A definition statement begins with the keyword define, followed by one or more variable

definitions separated by semi-colons. Each variable definition consists of a variable name, which may

be preceded a type specifier, and followed by an initial value for the variable. The definition may

further be preceded by one of the qualifiers const or volatile. If the const qualifier is present,

the variable must be assigned an initial value; otherwise, the type specifier and initial value are

optional. Any subsequent attempt to modify the value of a variable defined with the const qualifier

is regarded as an error. The volatile qualifier is used to indicate that the value of the variable may

be set by other components.

An initial value for a defined scalar variable can be the result of an expression. Using an expression

such as a function like DayOfYear() is a typical use. See an example below.

Type specifiers are made up of one of the keywords real, integer, text or boolean,

optionally followed by one or more array lengths surrounded by square brackets and separated by

commas (see below for examples)

 It is an error to define the same variable name more than once within a single manager script. The

only exception is that a “local” variable may be declared within a subroutine using the same name

as a variable outside the subroutine. When this occurs, all references to that variable name within

the subroutine refer to the “local” variable.

60

 If a variable name is defined within the script that is the same as an “external” variable, the name

will be taken to refer to the manager variable when it is used in expressions.

 If the type specifier is omitted, the type is inferred from the initial value. If no initial value is

given, the type of the variable is taken to be the same as that of the preceding variable in the list

of definitions. For the first variable in a list, it is taken to be a real number.

 The initial value is preceded by an equals sign. It is specified in the same way as a constant in an

expression (see above).

 If no initial value is provided, then the initial value of the variable is set as follows:

 numeric values are set to zero

 text values are set to the empty string

 logical values are set to FALSE.

Here are some examples of definition statements:

define x = 0.0

define x ! Same as the previous definition

define integer i; j; k ! All are integers

define integer m; n; text t ! Different types within one statement

define breed = 'Angus' ! Text variable (type inferred from initial value)

define volatile z = -999 ! Integer variable (type inferred from value)

 ! which may be set by other components

define const real pi=3.1415926 ! Real constant

define const integer sow_date = DayOfYear(‘1-May’)

define real x_arr[20] ! Array of real numbers

define real y_arr = [9.0,8.0,7.0,6.0] ! Also an array of real numbers

define real array2d[100,100] ! 2-dimensional array

define struct = (a:9.0; b:5; c:'STRING') ! A structure has to be defined using an initial

 ! value

12.6.1 Advanced initialisation of variables

Variables and constants can be initialised with the results of expressions.

For example:

When initialising complex variables it is now possible to use expressions to set values. This can be

done within arrays of records.

These are valid:

61

When initialising an array, each successive element will be assumed to follow the type of the first

element. For example:

12.6.2 Using constants as array size specifiers

When defining the size off arrays it requires the integer value of the number of elements. If an integer

constant is declared in the script previously then this constant can be used in the place of the literal

integer.

define const integer padd_count = 10 ! Integer constant

define string paddock_names[padd_count] ! Use integer constant as array size

12.7 Examples of complete statements

Here are some valid manager statements for a simulation with components called paddock1,

soilwater, subclover, ryegrass, and merinos:

define x = 100; y; z ! y & z are initialised at zero

define text nextpadd

define some_sw = [0.10,0.12,0.15,0.22, ! Array of real numbers, split over two lines

 0.30,0.30,0.30,0.34]

from start repeat 1 months ! Another rule would set "nextpadd"

{ merinos.move nextpadd }

on 1 apr 1980 ! Use a defined variable to trigger an event

{

 set z = subclover.green_dm + ryegrass.green_dm

 if z > 700

 {

 merinos.buy sex='wethers', number=10*paddock1.area, age=18.0, weight=50.0

 merinos.move group=merinos.nogroups, paddock='paddock1'

 }

}

each 15 dec ! Shear all sheep at least a year old

 for i = 1 to merinos.no_groups

 if merinos.age_months[i] > 12

 merinos.shear group=i

paddock1.soilwater.irrigate amount=pet - rain ! Daily irrigation

A more complete set of examples can be found in the AusFarm User Notes documents.

62

13. MANAGEMENT EVENTS SUMMARY

Stock component

buy Buy animals into the simulation

sell Sell animals out of the simulation

shear Shear (sheep only)

join Commence mating

castrate Castrated unweaned male lambs or calves

wean Wean some or all unweaned lambs or calves

dryoff End lactation in cattle

move Assign a group of animals to a paddock

split Divide a group of animals into two groups

tag Assign a “tag value” to a group of animals

Sort Sort the list of groups of animals by tag value

Supplement component

buy Purchase supplement

feed Place supplement in a paddock

reset Removes all residual supplement from a paddock

Soil Water component

irrigate Add irrigation water to the soil

Pasture component

sow Sow seed of the pasture species

spraytop Crude analogue to spraying this species with glyphosate

kill Kill herbage of this species only

cultivate Incorporates herbage and seeds into the soil

conserve Removes herbage and (optionally) stores it in a Supplement module

Cashbook component

earn Acquire cash

spend Spend cash

report Write a gross margin report

